==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRUS 16-JAN-95 2IFM . COMPND 2 MOLECULE: PF1 FILAMENTOUS BACTERIOPHAGE; . SOURCE 2 ORGANISM_SCIENTIFIC: XANTHOMONAS PHAGE XF; . AUTHOR D.A.MARVIN . 46 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4298.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 47102.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 13.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 40 87.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 73 0, 0.0 4,-2.4 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 149.3 11.5 -21.9 60.3 2 2 A V H > + 0 0 128 2,-0.2 4,-1.8 1,-0.2 0, 0.0 0.962 360.0 41.6 -52.5 -60.7 13.8 -24.1 58.3 3 3 A I H > S+ 0 0 142 1,-0.2 4,-1.6 2,-0.2 -1,-0.2 0.888 114.9 53.6 -53.2 -50.2 11.4 -27.0 57.6 4 4 A D H > S+ 0 0 116 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.926 108.1 48.9 -53.3 -46.7 8.6 -24.6 56.9 5 5 A T H >X S+ 0 0 83 -4,-2.4 3,-1.4 1,-0.2 4,-1.1 0.853 101.4 63.4 -70.2 -32.1 10.6 -22.6 54.3 6 6 A S H 3X S+ 0 0 57 -4,-1.8 4,-1.2 1,-0.3 3,-0.4 0.978 98.5 56.0 -55.2 -49.0 11.6 -25.8 52.5 7 7 A A H 3X S+ 0 0 60 -4,-1.6 4,-1.5 1,-0.2 -1,-0.3 0.665 97.5 66.9 -54.2 -19.4 7.9 -26.3 51.8 8 8 A V H X S+ 0 0 65 -4,-1.2 4,-1.5 1,-0.2 3,-0.7 0.942 108.1 35.3 -50.9 -60.1 7.9 -26.8 46.8 11 11 A A H 3X S+ 0 0 61 -4,-1.5 4,-2.3 -3,-0.5 -1,-0.2 0.719 114.4 58.7 -71.2 -23.7 4.8 -24.8 45.9 12 12 A I H 3X S+ 0 0 91 -4,-1.9 4,-2.3 2,-0.2 -1,-0.3 0.750 100.0 58.3 -75.0 -23.2 7.0 -22.3 44.1 13 13 A T H S+ 0 0 119 -4,-1.5 4,-2.1 -5,-0.4 5,-0.5 0.911 101.7 51.9 -76.1 -42.9 3.7 -21.0 34.4 20 20 A K H X5S+ 0 0 186 -4,-2.7 4,-1.6 1,-0.2 5,-0.2 0.926 116.2 48.4 -57.7 -34.9 6.1 -22.5 31.8 21 21 A A H >5S+ 0 0 55 -4,-0.5 4,-3.3 -5,-0.3 -2,-0.2 0.981 113.5 40.6 -66.8 -61.9 3.0 -24.6 30.8 22 22 A I H X5S+ 0 0 105 -4,-2.3 4,-1.6 1,-0.2 -2,-0.2 0.939 120.2 42.9 -54.7 -56.1 0.3 -21.9 30.6 23 23 A G H X5S+ 0 0 40 -4,-2.1 4,-1.2 1,-0.2 -1,-0.2 0.857 116.0 48.7 -61.5 -40.7 2.5 -19.3 28.9 24 24 A G H XX S+ 0 0 90 -4,-1.6 3,-1.7 1,-0.2 4,-0.8 0.903 96.7 60.7 -68.7 -37.9 -0.7 -19.6 24.9 27 27 A V H >X S+ 0 0 78 -4,-1.2 4,-2.1 -3,-0.4 3,-0.9 0.850 89.1 70.4 -56.8 -34.6 1.9 -19.4 22.2 28 28 A G H 3X S+ 0 0 41 -4,-0.9 4,-1.3 1,-0.3 -1,-0.3 0.892 103.1 45.2 -49.2 -36.1 0.2 -22.4 20.6 29 29 A A H X S+ 0 0 83 -4,-3.2 3,-1.9 1,-0.3 4,-1.3 0.961 111.1 54.7 -62.0 -52.0 0.3 -18.7 10.2 36 36 A A H 3X S+ 0 0 60 -4,-2.2 4,-1.1 -5,-0.3 -1,-0.3 0.797 107.2 60.1 -52.7 -24.3 -3.3 -18.0 9.4 37 37 A G H 3X S+ 0 0 29 -4,-1.1 4,-0.9 -3,-0.3 -1,-0.3 0.806 98.1 51.3 -73.6 -32.0 -1.8 -14.6 8.9 38 38 A L H << S+ 0 0 132 -3,-1.9 -2,-0.2 -4,-0.8 -1,-0.2 0.735 107.2 53.5 -78.0 -23.2 0.7 -15.5 6.1 39 39 A I H >X S+ 0 0 96 -4,-1.3 4,-2.4 2,-0.2 3,-2.0 0.904 99.9 60.4 -72.6 -44.5 -2.0 -17.1 3.9 40 40 A Y H 3X S+ 0 0 144 -4,-1.1 4,-1.9 1,-0.3 -2,-0.2 0.914 109.0 48.3 -48.9 -40.2 -4.1 -14.0 4.1 41 41 A S H 3X S+ 0 0 51 -4,-0.9 4,-0.6 2,-0.2 -1,-0.3 0.519 104.4 55.4 -80.4 -16.6 -1.0 -12.5 2.4 42 42 A M H <> S+ 0 0 112 -3,-2.0 4,-2.9 -4,-0.1 -1,-0.2 0.854 112.7 43.6 -79.9 -40.6 -0.6 -15.1 -0.2 43 43 A L H < S+ 0 0 122 -4,-2.4 -2,-0.2 2,-0.2 -3,-0.1 0.903 110.8 53.0 -65.8 -45.3 -4.1 -14.5 -1.4 44 44 A R H < S+ 0 0 169 -4,-1.9 -1,-0.2 -5,-0.3 -3,-0.2 0.885 115.3 47.6 -52.7 -40.2 -3.8 -10.7 -1.2 45 45 A K H < 0 0 153 -4,-0.6 -2,-0.2 -5,-0.1 -1,-0.2 0.937 360.0 360.0 -70.2 -59.0 -0.8 -11.2 -3.4 46 46 A A < 0 0 129 -4,-2.9 -3,-0.2 -5,-0.0 -2,-0.1 0.929 360.0 360.0 -94.7 360.0 -1.9 -13.6 -6.1