==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRUS 16-JAN-95 4IFM . COMPND 2 MOLECULE: PF1 FILAMENTOUS BACTERIOPHAGE; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS PHAGE PF1; . AUTHOR D.A.MARVIN . 46 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4308.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 51110.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 4.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 26.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 37 80.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 134 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 171.8 14.7 -22.3 67.0 2 2 A V - 0 0 121 2,-0.0 2,-0.1 0, 0.0 0, 0.0 -0.940 360.0-145.1 161.7-171.9 14.0 -22.9 63.2 3 3 A I - 0 0 138 -2,-0.3 2,-1.7 0, 0.0 0, 0.0 -0.355 19.1-139.6 173.5 98.5 11.5 -22.1 60.4 4 4 A D > + 0 0 124 1,-0.1 2,-1.0 -2,-0.1 3,-0.9 -0.534 29.8 166.4 -73.5 83.9 10.8 -24.7 57.7 5 5 A T T 3> + 0 0 76 -2,-1.7 4,-0.8 1,-0.2 -1,-0.1 -0.317 50.8 102.9 -91.3 46.8 10.7 -22.7 54.5 6 6 A S H 3> + 0 0 56 -2,-1.0 4,-1.7 2,-0.2 -1,-0.2 0.698 68.9 61.6 -98.7 -29.4 10.8 -26.0 52.7 7 7 A A H <> S+ 0 0 71 -3,-0.9 4,-1.4 2,-0.2 -2,-0.1 0.615 103.6 55.2 -71.7 -10.5 7.1 -26.0 51.8 8 8 A V H > S+ 0 0 68 2,-0.2 4,-3.2 3,-0.2 5,-0.5 0.955 99.8 55.2 -81.7 -62.9 8.1 -22.8 49.9 9 9 A E H X S+ 0 0 131 -4,-0.8 4,-1.4 2,-0.2 -2,-0.2 0.853 119.1 37.2 -33.9 -55.6 10.8 -24.4 47.8 10 10 A S H >X S+ 0 0 64 -4,-1.7 3,-1.8 1,-0.2 4,-1.2 0.989 115.7 48.7 -61.4 -76.8 8.2 -26.8 46.7 11 11 A A H 3X S+ 0 0 54 -4,-1.4 4,-1.1 1,-0.3 -2,-0.2 0.681 111.9 51.1 -36.5 -37.1 5.1 -24.7 46.5 12 12 A I H 3X S+ 0 0 100 -4,-3.2 4,-1.5 2,-0.2 -1,-0.3 0.885 102.7 60.4 -72.1 -39.6 6.9 -22.0 44.4 13 13 A T H XX S+ 0 0 76 -3,-1.8 4,-3.2 -4,-1.4 3,-0.6 0.920 101.8 51.6 -54.1 -45.9 8.2 -24.6 42.0 14 14 A D H 3X S+ 0 0 99 -4,-1.2 4,-3.0 1,-0.3 -1,-0.3 0.900 104.0 61.0 -59.0 -36.5 4.6 -25.5 41.1 15 15 A G H 3X S+ 0 0 29 -4,-1.1 4,-1.0 -5,-0.3 -1,-0.3 0.882 109.0 39.4 -55.2 -44.6 4.1 -21.8 40.5 16 16 A Q H XX S+ 0 0 90 -4,-1.5 4,-1.4 -3,-0.6 3,-0.6 0.923 111.8 60.6 -69.9 -47.1 6.8 -21.9 37.8 17 17 A G H >X S+ 0 0 40 -4,-3.2 4,-1.0 1,-0.3 3,-0.5 0.883 107.3 43.0 -48.1 -46.9 5.4 -25.2 36.7 18 18 A D H 3X S+ 0 0 103 -4,-3.0 4,-2.8 1,-0.2 -1,-0.3 0.792 108.5 58.1 -73.2 -29.0 2.0 -23.8 35.9 19 19 A M H X S+ 0 0 39 -4,-2.3 3,-2.0 2,-0.2 4,-1.5 0.940 117.4 48.2 -82.4 -68.3 3.4 -22.5 26.4 25 25 A Y H 3X S+ 0 0 199 -4,-1.7 4,-0.7 1,-0.3 -2,-0.2 0.732 107.8 60.5 -41.8 -33.3 -0.3 -23.0 25.7 26 26 A I H >< S+ 0 0 92 -4,-2.4 3,-0.8 -5,-0.4 4,-0.3 0.914 104.6 47.5 -61.1 -47.9 -0.5 -19.2 25.4 27 27 A V H XX S+ 0 0 83 -3,-2.0 3,-2.1 -4,-0.7 4,-1.2 0.850 97.2 70.9 -63.2 -35.3 2.0 -19.3 22.5 28 28 A G H 3X S+ 0 0 42 -4,-1.5 4,-0.9 1,-0.3 3,-0.3 0.833 101.0 47.7 -52.2 -31.9 0.2 -22.1 20.8 29 29 A A H S+ 0 0 112 -3,-2.1 4,-2.3 -4,-0.3 -2,-0.2 0.657 101.0 55.5 -88.8 -13.0 -0.0 -16.9 18.7 31 31 A V H X S+ 0 0 76 -4,-1.2 4,-3.0 -3,-0.3 5,-0.5 0.863 102.4 54.5 -82.0 -42.6 1.1 -19.3 16.0 32 32 A I H X S+ 0 0 118 -4,-0.9 4,-2.0 -5,-0.2 -2,-0.2 0.951 112.7 44.7 -55.8 -46.7 -2.5 -19.7 14.7 33 33 A L H X S+ 0 0 126 -4,-1.0 4,-0.8 2,-0.2 -2,-0.2 0.989 115.7 49.8 -56.7 -59.2 -2.6 -15.9 14.5 34 34 A A H >X S+ 0 0 54 -4,-2.3 3,-1.3 1,-0.2 4,-0.7 0.895 116.1 36.0 -44.1 -67.4 0.9 -15.9 12.9 35 35 A V H >X S+ 0 0 71 -4,-3.0 4,-2.4 1,-0.3 3,-1.3 0.896 111.5 59.8 -59.5 -44.8 0.4 -18.5 10.1 36 36 A A H 3X S+ 0 0 58 -4,-2.0 4,-1.2 -5,-0.5 -1,-0.3 0.727 107.1 51.9 -58.9 -14.6 -3.2 -17.5 9.4 37 37 A G H X S+ 0 0 95 -4,-2.4 4,-2.3 2,-0.2 3,-0.6 0.916 108.6 55.8 -62.0 -48.8 -1.6 -17.2 4.3 40 40 A Y H 3X S+ 0 0 134 -4,-1.2 4,-2.0 -5,-0.3 -1,-0.2 0.951 112.4 45.3 -51.3 -42.1 -3.8 -14.2 4.5 41 41 A S H 3X S+ 0 0 60 -4,-1.5 4,-0.5 2,-0.2 -1,-0.2 0.735 108.0 56.8 -76.4 -19.2 -0.9 -12.2 2.9 42 42 A M H XX S+ 0 0 128 -4,-1.4 4,-1.4 -3,-0.6 3,-0.8 0.970 109.7 44.7 -72.3 -51.8 -0.2 -14.9 0.3 43 43 A L H 3< S+ 0 0 125 -4,-2.3 3,-0.2 1,-0.3 -2,-0.2 0.925 112.4 48.6 -57.8 -52.3 -3.7 -14.8 -1.1 44 44 A R H 3< S+ 0 0 189 -4,-2.0 -1,-0.3 -5,-0.3 -2,-0.2 0.701 106.5 65.0 -63.3 -17.1 -4.1 -11.0 -1.2 45 45 A K H << 0 0 164 -3,-0.8 -1,-0.2 -4,-0.5 -2,-0.2 0.954 360.0 360.0 -68.6 -57.1 -0.7 -11.0 -3.0 46 46 A A < 0 0 138 -4,-1.4 -3,-0.2 -3,-0.2 -2,-0.1 0.657 360.0 360.0-123.0 360.0 -1.5 -12.8 -6.2