==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-MAR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN, SIGNALING PROTEIN 09-AUG-09 3IM3 . COMPND 2 MOLECULE: CAMP-DEPENDENT PROTEIN KINASE TYPE I-ALPHA . SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; . AUTHOR G.N.SARMA,F.S.KINDERMAN,C.KIM,S.VON DAAKE,S.S.TAYLOR . 50 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5056.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 76.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 36 72.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 12 A S > 0 0 122 0, 0.0 4,-1.9 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 -46.5 19.0 18.6 -0.4 2 13 A L H > + 0 0 151 2,-0.2 4,-2.9 1,-0.2 5,-0.2 0.910 360.0 50.0 -68.8 -41.8 19.0 15.2 1.2 3 14 A R H > S+ 0 0 175 1,-0.2 4,-2.5 2,-0.2 -1,-0.2 0.876 108.4 55.1 -63.2 -38.3 15.2 15.2 1.4 4 15 A E H > S+ 0 0 136 2,-0.2 4,-2.1 1,-0.2 -1,-0.2 0.930 110.5 43.9 -55.1 -51.9 15.2 16.2 -2.2 5 16 A a H X S+ 0 0 73 -4,-1.9 4,-2.7 2,-0.2 5,-0.2 0.927 111.7 53.7 -62.5 -46.4 17.3 13.1 -3.1 6 17 A E H X S+ 0 0 135 -4,-2.9 4,-2.2 1,-0.2 -2,-0.2 0.911 110.5 47.0 -53.4 -48.7 15.2 10.9 -0.9 7 18 A L H X S+ 0 0 91 -4,-2.5 4,-3.0 2,-0.2 -1,-0.2 0.883 111.6 50.4 -63.0 -41.6 12.0 12.0 -2.6 8 19 A Y H X S+ 0 0 146 -4,-2.1 4,-2.0 2,-0.2 6,-0.2 0.932 111.3 48.2 -64.3 -45.6 13.5 11.6 -6.1 9 20 A V H <>S+ 0 0 44 -4,-2.7 5,-2.0 1,-0.2 6,-0.5 0.899 114.5 46.8 -60.6 -42.2 14.6 8.0 -5.3 10 21 A Q H ><5S+ 0 0 149 -4,-2.2 3,-1.4 -5,-0.2 -2,-0.2 0.930 109.6 54.0 -65.3 -46.3 11.2 7.2 -3.9 11 22 A K H 3<5S+ 0 0 159 -4,-3.0 -2,-0.2 1,-0.3 -1,-0.2 0.866 114.8 38.9 -56.8 -40.5 9.4 8.7 -6.9 12 23 A H T 3<5S- 0 0 73 -4,-2.0 -1,-0.3 -5,-0.1 -2,-0.2 0.187 106.4-120.7-102.7 16.6 11.3 6.6 -9.4 13 24 A N T <>5 + 0 0 92 -3,-1.4 4,-2.1 1,-0.1 5,-0.2 0.771 58.5 153.2 57.6 28.4 11.4 3.4 -7.4 14 25 A I H >< + 0 0 56 -5,-2.0 4,-2.3 -6,-0.2 5,-0.3 0.870 63.2 55.4 -61.2 -40.5 15.2 3.5 -7.5 15 26 A Q H > S+ 0 0 159 -6,-0.5 4,-2.4 1,-0.2 -1,-0.2 0.956 111.8 41.5 -60.4 -51.8 15.7 1.6 -4.2 16 27 A A H > S+ 0 0 40 1,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.873 114.1 52.3 -63.2 -38.8 13.6 -1.5 -5.3 17 28 A L H X S+ 0 0 40 -4,-2.1 4,-1.9 2,-0.2 -1,-0.2 0.904 113.5 43.2 -67.1 -40.2 15.0 -1.5 -8.9 18 29 A L H X S+ 0 0 74 -4,-2.3 4,-2.3 2,-0.2 -2,-0.2 0.890 112.9 53.3 -71.1 -40.9 18.6 -1.5 -7.6 19 30 A K H X S+ 0 0 138 -4,-2.4 4,-2.3 -5,-0.3 -2,-0.2 0.942 111.5 45.7 -54.4 -52.1 17.7 -4.1 -5.0 20 31 A D H X S+ 0 0 88 -4,-2.7 4,-2.3 2,-0.2 -2,-0.2 0.874 109.8 54.0 -62.6 -37.6 16.2 -6.4 -7.6 21 32 A S H X S+ 0 0 6 -4,-1.9 4,-2.2 1,-0.2 -1,-0.2 0.911 109.9 47.9 -67.1 -39.3 19.2 -5.9 -9.9 22 33 A I H X S+ 0 0 101 -4,-2.3 4,-2.4 2,-0.2 5,-0.2 0.914 110.0 52.2 -64.6 -42.3 21.5 -6.9 -7.2 23 34 A V H X S+ 0 0 75 -4,-2.3 4,-2.1 1,-0.2 -2,-0.2 0.905 111.5 46.5 -62.0 -40.6 19.4 -10.0 -6.3 24 35 A Q H X S+ 0 0 85 -4,-2.3 4,-3.0 2,-0.2 5,-0.4 0.901 110.5 53.8 -68.4 -39.5 19.4 -11.1 -10.0 25 36 A L H X S+ 0 0 36 -4,-2.2 4,-2.2 1,-0.2 -2,-0.2 0.931 113.9 40.7 -57.7 -50.4 23.2 -10.5 -10.3 26 37 A a H < S+ 0 0 90 -4,-2.4 -1,-0.2 2,-0.2 -2,-0.2 0.844 117.7 48.8 -68.2 -34.9 23.9 -12.7 -7.2 27 38 A T H < S+ 0 0 105 -4,-2.1 -2,-0.2 -5,-0.2 -3,-0.2 0.942 123.5 29.4 -69.3 -48.1 21.4 -15.3 -8.2 28 39 A A H < S- 0 0 58 -4,-3.0 -2,-0.2 -5,-0.2 -3,-0.2 0.740 89.7-148.6 -84.2 -27.6 22.5 -15.7 -11.9 29 40 A R < - 0 0 205 -4,-2.2 -3,-0.1 -5,-0.4 -4,-0.1 0.971 20.1-145.4 49.2 65.3 26.2 -14.8 -11.4 30 41 A P - 0 0 35 0, 0.0 -1,-0.1 0, 0.0 4,-0.1 -0.275 17.3-145.6 -55.7 138.4 26.7 -13.2 -14.8 31 42 A E S S+ 0 0 182 1,-0.3 -2,-0.0 2,-0.1 0, 0.0 0.742 106.2 41.2 -65.5 -26.2 30.1 -13.7 -16.5 32 43 A R > + 0 0 189 1,-0.1 4,-2.2 2,-0.1 -1,-0.3 -0.739 68.8 166.9-127.7 82.4 29.3 -10.2 -17.7 33 44 A P H > S+ 0 0 51 0, 0.0 4,-2.5 0, 0.0 5,-0.2 0.846 79.1 51.5 -66.5 -39.1 27.7 -8.2 -14.8 34 45 A M H > S+ 0 0 134 2,-0.2 4,-2.5 1,-0.2 5,-0.2 0.922 111.0 47.9 -66.5 -44.0 28.0 -4.8 -16.5 35 46 A A H > S+ 0 0 44 2,-0.2 4,-2.7 1,-0.2 5,-0.2 0.924 111.4 53.0 -58.0 -44.3 26.3 -6.1 -19.7 36 47 A F H X S+ 0 0 47 -4,-2.2 4,-2.6 1,-0.2 -2,-0.2 0.939 110.6 45.2 -56.4 -51.0 23.6 -7.6 -17.4 37 48 A L H X S+ 0 0 40 -4,-2.5 4,-2.2 2,-0.2 5,-0.2 0.884 112.1 52.1 -62.6 -40.5 23.0 -4.2 -15.7 38 49 A R H X S+ 0 0 130 -4,-2.5 4,-2.2 1,-0.2 -2,-0.2 0.956 114.0 42.8 -59.7 -47.9 23.0 -2.3 -19.0 39 50 A E H X S+ 0 0 75 -4,-2.7 4,-1.7 2,-0.2 -2,-0.2 0.873 109.8 58.5 -68.0 -35.3 20.4 -4.7 -20.4 40 51 A Y H X S+ 0 0 51 -4,-2.6 4,-0.8 -5,-0.2 -1,-0.2 0.945 114.5 35.9 -57.5 -51.3 18.4 -4.7 -17.2 41 52 A F H X S+ 0 0 78 -4,-2.2 4,-3.0 1,-0.2 5,-0.2 0.797 107.4 67.1 -74.9 -28.0 17.9 -1.0 -17.3 42 53 A E H X S+ 0 0 83 -4,-2.2 4,-1.7 -5,-0.2 -1,-0.2 0.897 100.4 50.6 -59.3 -38.7 17.6 -0.9 -21.1 43 54 A K H X S+ 0 0 108 -4,-1.7 4,-1.0 1,-0.2 -1,-0.2 0.863 113.0 46.0 -67.3 -33.5 14.3 -2.8 -20.8 44 55 A L H X S+ 0 0 63 -4,-0.8 4,-2.0 2,-0.2 -2,-0.2 0.824 106.8 57.6 -74.7 -34.6 13.2 -0.2 -18.2 45 56 A E H X S+ 0 0 117 -4,-3.0 4,-1.8 1,-0.2 -2,-0.2 0.877 101.9 58.6 -60.8 -36.2 14.3 2.7 -20.4 46 57 A K H X S+ 0 0 157 -4,-1.7 4,-0.8 -5,-0.2 -1,-0.2 0.911 107.1 43.9 -62.0 -42.6 12.0 1.2 -23.0 47 58 A E H < S+ 0 0 123 -4,-1.0 3,-0.4 1,-0.2 -1,-0.2 0.878 109.1 59.4 -69.6 -35.6 8.9 1.6 -20.8 48 59 A E H < S+ 0 0 158 -4,-2.0 -2,-0.2 1,-0.2 -1,-0.2 0.862 111.3 38.7 -59.5 -40.5 10.0 5.0 -19.7 49 60 A A H < 0 0 86 -4,-1.8 -1,-0.2 -5,-0.1 -2,-0.2 0.570 360.0 360.0 -87.8 -9.8 10.0 6.4 -23.3 50 61 A K < 0 0 203 -4,-0.8 -3,-0.1 -3,-0.4 -4,-0.0 -0.024 360.0 360.0 -54.2 360.0 6.8 4.4 -24.2