==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER APOLIPOPROTEIN 12-MAY-98 1IOJ . COMPND 2 MOLECULE: APOC-I; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.ROZEK,J.T.SPARROW,K.H.WEISGRABER,R.J.CUSHLEY . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5801.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 52.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 42.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 163 0, 0.0 2,-0.4 0, 0.0 18,-0.0 0.000 360.0 360.0 360.0 80.5 -13.4 -1.7 -23.5 2 2 A P - 0 0 58 0, 0.0 2,-0.5 0, 0.0 6,-0.1 -0.611 360.0-132.4 -89.9 130.1 -14.8 -2.9 -20.1 3 3 A D - 0 0 167 -2,-0.4 2,-0.2 1,-0.0 5,-0.0 -0.650 30.9-142.1 -80.0 121.0 -15.5 -6.7 -19.4 4 4 A V + 0 0 74 -2,-0.5 -1,-0.0 3,-0.1 2,-0.0 -0.511 36.2 166.0 -92.2 149.5 -19.0 -7.0 -17.9 5 5 A S S S- 0 0 115 -2,-0.2 -2,-0.0 0, 0.0 -1,-0.0 -0.479 91.7 -50.2-152.4 73.2 -20.5 -9.3 -15.1 6 6 A S S S+ 0 0 93 1,-0.0 -2,-0.0 4,-0.0 0, 0.0 0.942 118.8 105.5 45.4 57.4 -23.9 -7.6 -14.4 7 7 A A S > S+ 0 0 44 3,-0.1 4,-1.8 4,-0.1 3,-0.4 0.651 81.0 35.3-121.6 -66.3 -22.1 -4.1 -14.1 8 8 A L T 4 S+ 0 0 41 1,-0.2 8,-0.2 2,-0.2 7,-0.1 0.602 112.0 67.7 -63.4 -13.3 -22.9 -2.2 -17.3 9 9 A D T 4 S+ 0 0 118 3,-0.1 3,-0.5 6,-0.1 -1,-0.2 0.939 107.0 36.9 -63.6 -51.2 -26.4 -4.0 -17.1 10 10 A K T 4 S+ 0 0 177 -3,-0.4 2,-1.3 1,-0.3 3,-0.3 0.985 125.6 39.5 -65.8 -60.4 -27.3 -1.9 -13.9 11 11 A L S < S+ 0 0 72 -4,-1.8 -1,-0.3 1,-0.2 4,-0.2 -0.651 76.3 138.1 -85.0 76.8 -25.6 1.4 -15.1 12 12 A K S > S+ 0 0 148 -2,-1.3 4,-1.3 -3,-0.5 -1,-0.2 0.848 76.4 34.7 -85.4 -41.4 -26.7 1.0 -18.8 13 13 A E H > S+ 0 0 129 -3,-0.3 4,-1.0 2,-0.2 -2,-0.1 0.923 127.7 38.0 -79.0 -49.3 -27.7 4.8 -19.4 14 14 A F H > S+ 0 0 130 2,-0.2 4,-1.5 1,-0.1 3,-0.2 0.901 116.7 54.0 -63.6 -44.6 -24.8 6.2 -17.1 15 15 A G H > S+ 0 0 0 1,-0.2 4,-1.1 -4,-0.2 -3,-0.2 0.924 106.0 50.9 -56.4 -49.7 -22.3 3.5 -18.4 16 16 A N H X S+ 0 0 115 -4,-1.3 4,-1.5 2,-0.2 -1,-0.2 0.808 106.4 57.9 -54.0 -35.9 -22.9 4.3 -22.1 17 17 A T H X S+ 0 0 90 -4,-1.0 4,-1.6 -3,-0.2 3,-0.2 0.978 112.3 36.4 -61.8 -60.5 -22.2 8.1 -21.3 18 18 A L H X S+ 0 0 92 -4,-1.5 4,-0.9 2,-0.2 -1,-0.2 0.485 109.3 64.8 -78.9 0.3 -18.6 7.7 -19.8 19 19 A E H X S+ 0 0 53 -4,-1.1 4,-2.0 -5,-0.2 -1,-0.2 0.894 106.2 43.6 -73.7 -48.1 -17.8 4.8 -22.4 20 20 A D H < S+ 0 0 106 -4,-1.5 -2,-0.2 -3,-0.2 -3,-0.1 0.893 112.9 52.9 -59.6 -42.6 -18.1 7.5 -25.2 21 21 A K H X S+ 0 0 113 -4,-1.6 4,-1.9 1,-0.2 3,-0.2 0.815 109.0 49.9 -61.7 -33.5 -16.0 10.0 -23.0 22 22 A A H X S+ 0 0 27 -4,-0.9 4,-1.9 1,-0.2 2,-1.5 0.921 106.8 53.4 -70.3 -45.4 -13.2 7.4 -22.5 23 23 A R H < S+ 0 0 121 -4,-2.0 -1,-0.2 1,-0.2 -4,-0.0 -0.632 117.5 40.0 -84.0 76.3 -13.0 6.6 -26.4 24 24 A E H 4 S+ 0 0 80 -2,-1.5 -2,-0.2 -3,-0.2 -1,-0.2 -0.125 117.2 43.5 169.3 -62.8 -12.5 10.4 -26.9 25 25 A L H X S+ 0 0 75 -4,-1.9 4,-1.3 1,-0.1 -3,-0.2 0.923 121.0 39.8 -74.9 -47.5 -10.2 11.5 -24.0 26 26 A I T < S+ 0 0 82 -4,-1.9 2,-1.5 -5,-0.2 4,-0.3 0.836 102.1 74.8 -70.2 -35.3 -7.7 8.4 -24.3 27 27 A S T 4 S+ 0 0 87 -5,-0.5 -1,-0.2 1,-0.2 -4,-0.0 -0.657 112.6 23.3 -77.8 86.1 -7.9 8.6 -28.2 28 28 A R T 4 S+ 0 0 176 -2,-1.5 -1,-0.2 0, 0.0 -2,-0.2 -0.359 128.9 47.1 141.7 -53.5 -5.6 11.8 -28.2 29 29 A I < + 0 0 31 -4,-1.3 -3,-0.2 3,-0.1 -2,-0.1 0.957 64.3 165.8 -76.4 -81.6 -3.8 11.2 -24.7 30 30 A K S S- 0 0 151 -4,-0.3 -4,-0.1 1,-0.1 -3,-0.1 0.993 87.7 -26.2 59.7 66.4 -2.7 7.4 -24.9 31 31 A Q S S+ 0 0 90 4,-0.1 5,-0.3 1,-0.0 -1,-0.1 0.940 117.8 105.8 56.0 56.7 -0.3 7.5 -21.8 32 32 A S S S+ 0 0 64 3,-0.2 7,-0.2 7,-0.0 3,-0.1 0.449 97.6 0.8-117.9 -97.4 0.6 11.3 -22.1 33 33 A E S S+ 0 0 164 1,-0.2 4,-0.1 3,-0.1 -4,-0.0 0.460 133.6 62.2 -71.2 0.6 -1.1 13.5 -19.4 34 34 A L S S+ 0 0 119 -8,-0.1 -1,-0.2 2,-0.0 4,-0.1 0.867 122.3 17.9 -77.0 -47.4 -2.6 10.1 -18.1 35 35 A S S S+ 0 0 7 1,-0.1 2,-2.0 2,-0.1 -3,-0.2 0.722 73.9 119.1 -87.0-110.0 1.1 8.9 -17.5 36 36 A A S > S+ 0 0 67 -5,-0.3 4,-1.6 1,-0.3 -1,-0.1 -0.490 96.9 39.8 70.2 -68.9 4.0 11.5 -17.3 37 37 A K H > S+ 0 0 172 -2,-2.0 4,-1.8 2,-0.2 -1,-0.3 0.837 118.4 49.5 -68.1 -36.9 4.7 10.4 -13.6 38 38 A M H > S+ 0 0 81 2,-0.2 4,-2.1 3,-0.1 5,-0.1 0.902 111.1 48.1 -66.8 -44.1 4.1 6.7 -14.7 39 39 A R H > S+ 0 0 138 2,-0.2 4,-1.6 -7,-0.2 -2,-0.2 0.859 112.4 49.0 -67.8 -34.9 6.5 7.0 -17.8 40 40 A E H < S+ 0 0 150 -4,-1.6 -2,-0.2 2,-0.2 -1,-0.2 0.920 113.4 48.2 -59.7 -47.0 9.2 8.6 -15.6 41 41 A W H X S+ 0 0 126 -4,-1.8 4,-2.4 1,-0.2 3,-0.3 0.826 108.8 52.4 -61.5 -39.4 8.7 5.7 -13.0 42 42 A F H X S+ 0 0 100 -4,-2.1 4,-1.4 1,-0.2 2,-1.3 0.886 106.3 54.6 -66.0 -39.9 8.8 2.9 -15.9 43 43 A S H < S+ 0 0 78 -4,-1.6 -1,-0.2 1,-0.2 -4,-0.0 -0.592 116.9 37.8 -87.2 69.4 12.3 4.4 -17.1 44 44 A E H > S+ 0 0 81 -2,-1.3 4,-1.7 -3,-0.3 -2,-0.2 -0.083 115.1 48.2 175.1 -63.7 13.6 4.0 -13.4 45 45 A T H X S+ 0 0 50 -4,-2.4 4,-1.0 2,-0.2 -3,-0.2 0.963 121.3 37.0 -65.5 -54.8 12.1 0.6 -12.2 46 46 A F H X S+ 0 0 135 -4,-1.4 4,-2.4 -5,-0.2 3,-0.2 0.863 113.8 58.3 -61.7 -40.6 13.1 -1.3 -15.4 47 47 A Q H > S+ 0 0 85 -5,-0.4 4,-2.0 2,-0.2 -2,-0.2 0.856 101.0 55.7 -60.6 -37.5 16.5 0.7 -15.7 48 48 A K H X S+ 0 0 116 -4,-1.7 4,-0.6 2,-0.2 -1,-0.2 0.877 112.6 42.9 -56.9 -42.2 17.5 -0.6 -12.1 49 49 A V H >X S+ 0 0 80 -4,-1.0 4,-2.6 -3,-0.2 3,-0.6 0.930 113.4 51.9 -65.1 -50.6 17.0 -4.3 -13.4 50 50 A K H 3< S+ 0 0 57 -4,-2.4 5,-0.2 1,-0.2 -2,-0.2 0.905 105.6 51.8 -61.3 -49.9 18.7 -3.7 -16.8 51 51 A E H 3< S+ 0 0 120 -4,-2.0 -1,-0.2 1,-0.2 -2,-0.1 0.725 119.6 38.0 -52.9 -29.4 22.1 -2.1 -15.5 52 52 A K H << S+ 0 0 156 -3,-0.6 -2,-0.2 -4,-0.6 -1,-0.2 0.912 128.2 12.4 -86.9 -55.9 22.5 -5.2 -13.0 53 53 A L S < S+ 0 0 120 -4,-2.6 2,-0.3 4,-0.1 -3,-0.1 0.494 85.7 83.1-103.2-128.5 21.3 -8.3 -15.1 54 54 A K S S- 0 0 144 1,-0.2 3,-0.1 3,-0.0 -3,-0.1 -0.459 124.5 -38.9 59.1-114.0 20.5 -8.8 -18.9 55 55 A I S S- 0 0 142 -2,-0.3 -1,-0.2 -5,-0.2 -4,-0.0 0.810 111.2 -61.9 -92.2 -67.9 24.1 -9.4 -20.2 56 56 A D 0 0 120 -6,-0.1 0, 0.0 0, 0.0 0, 0.0 0.168 360.0 360.0-140.6 -87.2 25.9 -6.8 -17.9 57 57 A S 0 0 111 -3,-0.1 -4,-0.1 -5,-0.0 -5,-0.1 0.914 360.0 360.0 -86.3 360.0 24.8 -3.1 -18.5