==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 19-APR-01 1IP0 . COMPND 2 MOLECULE: BETACELLULIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR K.MIURA,H.DOURA,T.AIZAWA,H.TADA,M.SENO,H.YAMADA,K.KAWANO . 50 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5177.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 62.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 26.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 8.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 264 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -63.5 -9.0 5.8 -17.6 2 2 A K - 0 0 167 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.492 360.0 -31.4-139.1 -56.3 -6.7 6.7 -14.7 3 3 A G + 0 0 41 2,-0.0 2,-0.8 0, 0.0 0, 0.0 -0.245 62.6 157.2-172.8 71.8 -7.4 4.7 -11.5 4 4 A H + 0 0 177 2,-0.0 2,-0.1 20,-0.0 0, 0.0 -0.506 41.7 108.7-103.1 66.1 -11.0 3.6 -10.9 5 5 A F S S- 0 0 102 -2,-0.8 2,-0.5 19,-0.1 19,-0.2 -0.341 75.3 -75.8-119.1-157.5 -10.4 0.7 -8.5 6 6 A S E -A 23 0A 52 17,-1.6 17,-2.3 -2,-0.1 2,-0.2 -0.922 38.4-138.5-111.8 125.1 -11.0 -0.0 -4.8 7 7 A R E -A 22 0A 204 -2,-0.5 15,-0.2 15,-0.2 13,-0.0 -0.565 24.0-115.5 -79.8 141.2 -8.6 1.5 -2.2 8 8 A a - 0 0 14 13,-2.3 13,-0.3 -2,-0.2 2,-0.1 -0.655 29.2-136.6 -80.2 124.4 -7.6 -0.8 0.8 9 9 A P >> - 0 0 69 0, 0.0 3,-1.0 0, 0.0 4,-0.7 -0.375 20.5-113.4 -76.2 156.5 -8.9 0.6 4.1 10 10 A K G >4 S+ 0 0 179 1,-0.2 3,-0.8 2,-0.2 -2,-0.0 0.862 116.1 63.9 -59.1 -33.3 -6.7 0.6 7.2 11 11 A Q G 34 S+ 0 0 148 1,-0.3 -1,-0.2 2,-0.1 3,-0.1 0.857 112.5 34.3 -60.6 -32.9 -9.0 -2.0 8.8 12 12 A Y G <4 S+ 0 0 156 -3,-1.0 2,-1.0 1,-0.2 3,-0.5 0.391 93.8 94.0-102.7 3.9 -8.0 -4.5 6.0 13 13 A K << + 0 0 36 -3,-0.8 3,-0.4 -4,-0.7 -1,-0.2 -0.271 41.6 124.4 -90.4 53.4 -4.4 -3.3 5.7 14 14 A H + 0 0 157 -2,-1.0 -1,-0.2 1,-0.2 3,-0.2 0.734 67.6 60.8 -84.5 -18.3 -3.0 -5.9 8.1 15 15 A Y S S+ 0 0 101 -3,-0.5 2,-0.3 1,-0.2 -1,-0.2 0.635 114.4 35.5 -80.9 -11.4 -0.5 -7.2 5.5 16 16 A b - 0 0 9 -3,-0.4 3,-0.5 1,-0.1 -1,-0.2 -0.905 59.4-174.9-145.4 114.6 1.1 -3.7 5.3 17 17 A I S S+ 0 0 109 25,-1.9 2,-0.4 -2,-0.3 26,-0.2 0.994 92.6 17.1 -72.1 -64.8 1.6 -1.3 8.3 18 18 A K S S+ 0 0 60 25,-1.6 17,-1.9 24,-0.3 2,-0.3 -0.342 114.2 87.5-103.9 54.2 3.0 1.8 6.6 19 19 A G E - B 0 34A 3 -3,-0.5 15,-0.3 -2,-0.4 -3,-0.1 -0.991 63.7-139.1-150.4 140.5 1.9 0.8 3.0 20 20 A R E - B 0 33A 156 13,-1.8 13,-1.8 -2,-0.3 2,-0.3 -0.271 16.5-153.4 -89.5-179.5 -1.3 1.4 0.9 21 21 A a E - B 0 32A 9 11,-0.3 -13,-2.3 -13,-0.3 2,-0.6 -0.963 10.1-148.5-158.4 139.2 -2.9 -1.2 -1.4 22 22 A R E -AB 7 31A 127 9,-2.9 9,-1.7 -2,-0.3 2,-0.7 -0.910 13.8-165.4-113.6 110.6 -5.1 -1.1 -4.6 23 23 A F E -AB 6 30A 88 -17,-2.3 -17,-1.6 -2,-0.6 2,-0.6 -0.828 9.7-150.1 -97.3 116.4 -7.6 -4.0 -4.9 24 24 A V E > - B 0 29A 17 5,-1.5 5,-1.5 -2,-0.7 -19,-0.1 -0.738 14.1-176.9 -86.9 117.7 -9.1 -4.3 -8.4 25 25 A V T 5S+ 0 0 102 -2,-0.6 3,-0.4 3,-0.2 -1,-0.2 0.962 80.1 47.2 -79.8 -55.9 -12.6 -5.8 -8.2 26 26 A A T 5S+ 0 0 110 1,-0.3 2,-0.8 2,-0.1 -1,-0.1 0.966 127.0 30.7 -50.5 -55.0 -13.6 -6.0 -11.9 27 27 A E T 5S- 0 0 150 2,-0.1 -1,-0.3 -4,-0.0 -3,-0.2 -0.826 101.9-123.8-106.5 93.7 -10.2 -7.6 -12.7 28 28 A Q T 5 + 0 0 171 -2,-0.8 -3,-0.2 -3,-0.4 -2,-0.1 -0.073 57.0 144.2 -38.4 97.7 -9.2 -9.5 -9.5 29 29 A T E < -B 24 0A 54 -5,-1.5 -5,-1.5 -2,-0.1 2,-0.8 -0.619 28.4-172.1-147.1 84.9 -5.9 -7.9 -8.8 30 30 A P E +B 23 0A 82 0, 0.0 2,-0.5 0, 0.0 -7,-0.2 -0.660 17.4 170.9 -79.0 107.4 -4.9 -7.3 -5.2 31 31 A S E -B 22 0A 57 -9,-1.7 -9,-2.9 -2,-0.8 2,-0.5 -0.968 18.8-158.8-124.4 126.3 -1.7 -5.2 -5.2 32 32 A b E -B 21 0A 52 -2,-0.5 2,-0.6 -11,-0.3 -11,-0.3 -0.876 4.4-166.9-105.1 128.1 -0.2 -3.7 -2.1 33 33 A V E -B 20 0A 98 -13,-1.8 -13,-1.8 -2,-0.5 3,-0.1 -0.927 9.6-154.0-115.7 113.0 2.2 -0.7 -2.5 34 34 A c E -B 19 0A 29 -2,-0.6 -15,-0.3 -15,-0.3 4,-0.1 -0.365 39.5 -76.6 -79.9 163.6 4.3 0.3 0.6 35 35 A D > - 0 0 78 -17,-1.9 3,-1.6 1,-0.1 -1,-0.1 -0.351 39.2-128.8 -60.1 132.8 5.6 3.8 1.2 36 36 A E T 3 S+ 0 0 201 1,-0.3 2,-0.3 -3,-0.1 -1,-0.1 0.902 109.5 47.9 -51.2 -43.0 8.7 4.5 -1.0 37 37 A G T 3 S+ 0 0 27 2,-0.0 10,-2.9 9,-0.0 -1,-0.3 -0.139 94.5 111.4 -91.6 41.3 10.7 5.6 2.0 38 38 A Y E < -C 46 0B 76 -3,-1.6 8,-0.3 -2,-0.3 2,-0.3 -0.669 47.9-158.9-110.1 168.4 9.7 2.6 4.2 39 39 A I E > +C 45 0B 58 6,-2.8 6,-1.2 -2,-0.2 5,-0.7 -0.973 44.9 53.7-142.9 157.5 11.7 -0.4 5.6 40 40 A G T > 5S- 0 0 32 -2,-0.3 3,-0.7 4,-0.2 -2,-0.0 -0.063 80.5 -93.7 100.0 155.4 11.0 -3.9 6.8 41 41 A A T 3 5S+ 0 0 100 1,-0.2 -1,-0.1 2,-0.1 0, 0.0 0.918 126.7 40.0 -73.4 -42.1 9.0 -6.8 5.3 42 42 A R T 3 5S- 0 0 181 -26,-0.1 -25,-1.9 -25,-0.0 -24,-0.3 0.097 123.5-101.8 -93.8 25.5 5.7 -5.9 6.9 43 43 A c T < 5S+ 0 0 0 -3,-0.7 -25,-1.6 -27,-0.2 -3,-0.2 0.968 83.3 130.3 56.7 55.2 6.3 -2.1 6.4 44 44 A E < + 0 0 140 -5,-0.7 -4,-0.2 -27,-0.2 -1,-0.1 0.828 53.4 55.4-104.9 -48.9 7.4 -1.5 10.0 45 45 A R E S-C 39 0B 181 -6,-1.2 -6,-2.8 -7,-0.0 2,-0.3 -0.283 71.1-151.5 -79.8 171.1 10.7 0.4 9.8 46 46 A V E -C 38 0B 57 -8,-0.3 -8,-0.3 -2,-0.0 3,-0.0 -0.989 20.5-148.8-144.4 154.2 11.1 3.7 7.9 47 47 A D S S+ 0 0 117 -10,-2.9 2,-0.3 -2,-0.3 -9,-0.1 -0.162 80.0 69.6-113.7 39.1 13.8 5.7 6.0 48 48 A L + 0 0 110 -11,-0.1 -1,-0.1 1,-0.1 -11,-0.0 -0.779 40.8 165.0-158.3 109.2 12.6 9.2 6.7 49 49 A F 0 0 183 -2,-0.3 -1,-0.1 1,-0.2 -2,-0.0 0.922 360.0 360.0 -90.5 -56.8 12.6 11.0 10.1 50 50 A Y 0 0 286 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 -0.792 360.0 360.0 -90.3 360.0 12.0 14.7 9.1