==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 25-OCT-01 1IRZ . COMPND 2 MOLECULE: ARR10-B; . SOURCE 2 ORGANISM_SCIENTIFIC: ARABIDOPSIS THALIANA; . AUTHOR T.YAMAZAKI,E.KATOH,K.HOSODA,T.MIZUNO . 64 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5783.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 65.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 51.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 198 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 105.1 25.2 4.2 -3.0 2 2 A A - 0 0 93 1,-0.0 0, 0.0 2,-0.0 0, 0.0 -0.956 360.0 -59.0 176.8 167.1 21.5 5.1 -2.8 3 3 A Q - 0 0 147 -2,-0.3 -1,-0.0 1,-0.1 0, 0.0 0.134 40.0-151.1 -50.1-179.8 18.9 7.3 -1.1 4 4 A K + 0 0 197 2,-0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.206 27.3 160.0-155.6 55.2 18.6 7.0 2.7 5 5 A K - 0 0 69 1,-0.0 2,-0.3 0, 0.0 3,-0.3 -0.684 38.6-124.7 -85.9 135.8 15.1 7.9 3.9 6 6 A P S S- 0 0 103 0, 0.0 3,-0.2 0, 0.0 -2,-0.0 -0.569 81.2 -10.3 -78.7 136.2 14.2 6.6 7.4 7 7 A R S S- 0 0 162 -2,-0.3 2,-0.3 1,-0.1 34,-0.0 0.891 84.8-128.0 38.6 90.4 11.0 4.5 7.6 8 8 A V - 0 0 32 -3,-0.3 -1,-0.1 1,-0.2 33,-0.0 -0.494 30.0-178.7 -67.9 125.2 9.6 5.0 4.1 9 9 A L S S- 0 0 113 -2,-0.3 -1,-0.2 -3,-0.2 2,-0.1 0.910 71.5 -23.6 -91.3 -53.5 5.9 6.1 4.4 10 10 A W S S+ 0 0 89 5,-0.0 2,-0.2 4,-0.0 -1,-0.1 -0.455 83.3 144.8-160.9 79.7 4.9 6.4 0.7 11 11 A T > - 0 0 40 -2,-0.1 4,-2.0 1,-0.1 5,-0.2 -0.625 67.9 -89.7-113.3 175.5 7.6 7.0 -1.9 12 12 A H H > S+ 0 0 115 -2,-0.2 4,-0.8 1,-0.2 -1,-0.1 0.774 128.8 52.1 -56.9 -20.5 8.0 5.8 -5.5 13 13 A E H >> S+ 0 0 102 2,-0.2 4,-1.5 1,-0.2 3,-1.1 0.967 109.2 42.6 -80.7 -59.7 9.8 2.8 -3.9 14 14 A L H 3> S+ 0 0 1 1,-0.3 4,-1.5 2,-0.2 -2,-0.2 0.764 113.6 58.0 -58.6 -20.0 7.2 1.6 -1.3 15 15 A H H 3X S+ 0 0 70 -4,-2.0 4,-1.1 2,-0.2 -1,-0.3 0.824 100.8 53.8 -80.4 -30.3 4.7 2.3 -4.1 16 16 A N H X S+ 0 0 15 -4,-1.3 4,-1.0 -5,-0.2 3,-0.9 0.954 117.8 46.3 -71.3 -47.1 -1.5 -6.4 -5.2 23 23 A D H >< S+ 0 0 132 -4,-2.2 3,-0.8 1,-0.3 -2,-0.2 0.929 106.9 58.3 -60.6 -43.1 -1.1 -7.5 -8.8 24 24 A H H 3< S+ 0 0 146 -4,-1.6 -1,-0.3 1,-0.3 -2,-0.2 0.785 119.1 32.2 -58.9 -22.8 0.7 -10.7 -7.7 25 25 A L H << S- 0 0 71 -3,-0.9 4,-0.4 -4,-0.7 -1,-0.3 0.418 123.2-103.2-112.5 -1.7 -2.5 -11.4 -5.7 26 26 A G XX - 0 0 30 -4,-1.0 4,-1.6 -3,-0.8 3,-1.2 0.741 18.7-120.7 80.6 107.6 -5.0 -9.8 -8.1 27 27 A V T 34 S+ 0 0 94 1,-0.3 -1,-0.1 2,-0.2 -4,-0.1 0.758 112.7 66.6 -52.6 -19.7 -6.3 -6.4 -7.0 28 28 A E T 34 S+ 0 0 164 1,-0.2 -1,-0.3 -6,-0.1 -2,-0.1 0.928 121.6 12.9 -70.2 -43.3 -9.7 -8.1 -7.1 29 29 A R T <4 S+ 0 0 199 -3,-1.2 2,-0.6 -4,-0.4 -2,-0.2 0.214 96.6 123.4-116.8 14.2 -9.0 -10.5 -4.2 30 30 A A < - 0 0 12 -4,-1.6 -8,-0.1 -8,-0.1 -4,-0.1 -0.647 45.1-161.4 -79.6 120.2 -5.8 -8.8 -2.9 31 31 A V > - 0 0 67 -2,-0.6 4,-1.7 1,-0.1 5,-0.1 -0.690 23.9-132.0-100.6 157.2 -6.2 -7.9 0.8 32 32 A P H > S+ 0 0 30 0, 0.0 4,-1.3 0, 0.0 17,-0.1 0.727 103.9 62.0 -77.2 -24.1 -4.2 -5.4 2.7 33 33 A K H > S+ 0 0 109 2,-0.2 4,-0.7 1,-0.2 14,-0.1 0.975 111.0 35.7 -68.1 -53.0 -3.7 -7.8 5.6 34 34 A K H >> S+ 0 0 122 1,-0.2 3,-1.3 2,-0.2 4,-1.0 0.932 117.7 52.3 -68.0 -41.8 -1.8 -10.4 3.5 35 35 A I H 3X S+ 0 0 2 -4,-1.7 4,-1.9 1,-0.3 -1,-0.2 0.828 93.1 75.2 -64.5 -24.6 -0.1 -7.7 1.4 36 36 A L H 3X S+ 0 0 39 -4,-1.3 4,-2.0 1,-0.3 5,-0.3 0.905 96.7 48.2 -53.5 -35.7 1.0 -6.2 4.8 37 37 A D H << S+ 0 0 110 -3,-1.3 -1,-0.3 -4,-0.7 -2,-0.2 0.874 102.0 63.2 -72.5 -33.7 3.5 -9.1 4.8 38 38 A L H < S+ 0 0 77 -4,-1.0 -2,-0.2 1,-0.2 -1,-0.2 0.903 107.9 43.1 -57.3 -38.5 4.5 -8.3 1.3 39 39 A M H < S- 0 0 11 -4,-1.9 -2,-0.2 2,-0.1 -1,-0.2 0.964 75.6-179.2 -73.6 -51.5 5.7 -4.9 2.5 40 40 A N < + 0 0 140 -4,-2.0 2,-0.2 -5,-0.2 -3,-0.1 0.823 32.5 146.1 56.4 26.4 7.5 -6.2 5.7 41 41 A V > - 0 0 32 -5,-0.3 3,-1.0 1,-0.1 -1,-0.2 -0.637 53.9-108.8 -94.0 154.3 8.3 -2.5 6.4 42 42 A D T 3 S+ 0 0 105 -2,-0.2 3,-0.1 1,-0.2 -1,-0.1 -0.539 103.1 21.1 -80.3 146.8 8.5 -1.1 9.9 43 43 A K T 3 S+ 0 0 152 1,-0.2 2,-0.6 -2,-0.2 -1,-0.2 0.479 98.5 117.4 77.2 -2.2 5.7 1.3 10.9 44 44 A L < + 0 0 14 -3,-1.0 -1,-0.2 -8,-0.1 2,-0.2 -0.863 40.1 173.5-102.4 119.2 3.6 -0.2 8.2 45 45 A T > - 0 0 69 -2,-0.6 4,-1.0 -3,-0.1 3,-0.2 -0.580 45.9-105.2-113.9-180.0 0.4 -2.0 9.4 46 46 A R H > S+ 0 0 145 1,-0.2 4,-1.9 2,-0.2 5,-0.2 0.807 118.9 58.9 -77.1 -26.9 -2.6 -3.6 7.5 47 47 A E H > S+ 0 0 130 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.779 101.5 56.2 -72.5 -23.0 -4.8 -0.6 8.4 48 48 A N H > S+ 0 0 66 2,-0.2 4,-1.2 1,-0.2 -1,-0.2 0.882 113.0 38.7 -76.4 -36.5 -2.4 1.7 6.6 49 49 A V H X S+ 0 0 1 -4,-1.0 4,-1.2 1,-0.2 -2,-0.2 0.781 113.5 56.1 -83.4 -25.9 -2.6 -0.2 3.3 50 50 A A H X S+ 0 0 19 -4,-1.9 4,-1.8 2,-0.2 -1,-0.2 0.745 104.4 55.1 -77.0 -20.4 -6.4 -0.8 3.8 51 51 A S H X S+ 0 0 57 -4,-0.9 4,-1.6 2,-0.2 -2,-0.2 0.934 106.2 47.7 -77.9 -46.1 -6.9 3.0 4.1 52 52 A H H X S+ 0 0 67 -4,-1.2 4,-1.2 1,-0.2 -2,-0.2 0.854 112.9 52.1 -63.7 -30.3 -5.3 3.9 0.8 53 53 A L H X S+ 0 0 44 -4,-1.2 4,-1.5 2,-0.2 3,-0.5 0.955 111.0 43.9 -71.6 -48.4 -7.3 1.1 -0.8 54 54 A Q H X S+ 0 0 131 -4,-1.8 4,-1.1 1,-0.2 -1,-0.2 0.752 110.9 58.4 -68.6 -19.3 -10.7 2.3 0.5 55 55 A K H X S+ 0 0 145 -4,-1.6 4,-1.8 2,-0.2 -1,-0.2 0.811 101.1 54.8 -79.9 -28.1 -9.6 5.9 -0.4 56 56 A F H X S+ 0 0 117 -4,-1.2 4,-1.4 -3,-0.5 5,-0.2 0.951 103.9 52.6 -71.0 -46.4 -9.1 4.9 -4.1 57 57 A R H X S+ 0 0 133 -4,-1.5 4,-1.7 1,-0.3 3,-0.5 0.930 110.5 49.7 -55.4 -40.4 -12.7 3.6 -4.5 58 58 A V H X S+ 0 0 97 -4,-1.1 4,-0.8 1,-0.3 -1,-0.3 0.919 111.0 48.3 -64.7 -38.7 -13.9 6.9 -3.1 59 59 A A H < S+ 0 0 52 -4,-1.8 -1,-0.3 1,-0.2 -2,-0.2 0.657 110.3 54.7 -74.4 -12.2 -11.6 8.6 -5.6 60 60 A L H < S+ 0 0 88 -4,-1.4 3,-0.3 -3,-0.5 -2,-0.2 0.759 99.0 62.4 -91.1 -27.3 -13.1 6.3 -8.2 61 61 A K H < S+ 0 0 172 -4,-1.7 2,-1.0 1,-0.3 -2,-0.1 0.981 112.4 26.2 -61.2 -81.2 -16.8 7.3 -7.4 62 62 A K S < S+ 0 0 196 -4,-0.8 2,-0.5 2,-0.0 -1,-0.3 -0.714 77.8 159.4 -87.3 103.9 -16.9 11.0 -8.3 63 63 A V 0 0 107 -2,-1.0 -3,-0.0 -3,-0.3 -4,-0.0 -0.902 360.0 360.0-128.9 106.7 -14.1 11.5 -10.9 64 64 A S 0 0 191 -2,-0.5 -1,-0.1 0, 0.0 -2,-0.0 0.737 360.0 360.0-118.8 360.0 -14.3 14.6 -13.1