==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 04-JUL-02 1IXT . COMPND 2 MOLECULE: SPASMODIC PROTEIN TX9A-LIKE PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.A.MILES,C.Y.DY,J.NIELSEN,K.J.BARNHAM,M.G.HINDS, . 27 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2233.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 11 40.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 7.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 25.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 7.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 171 0, 0.0 2,-0.7 0, 0.0 15,-0.1 0.000 360.0 360.0 360.0 -44.6 -3.5 -2.2 -9.2 2 2 A a + 0 0 26 23,-0.1 2,-0.3 13,-0.1 21,-0.1 -0.812 360.0 151.9 -94.9 114.3 -2.6 -1.1 -5.7 3 3 A N + 0 0 143 -2,-0.7 2,-0.2 21,-0.1 21,-0.1 -0.890 26.8 91.4-145.8 108.0 -4.0 2.3 -4.8 4 4 A N B -aB 22 23A 73 17,-0.7 19,-1.0 19,-0.6 2,-0.3 -0.818 66.8 -95.8-164.8-155.9 -4.9 3.2 -1.2 5 5 A S - 0 0 92 17,-0.4 18,-0.2 6,-0.3 2,-0.1 -0.834 32.7-154.0-151.2 103.6 -3.4 4.7 2.0 6 6 A b - 0 0 32 16,-0.9 6,-0.1 -2,-0.3 16,-0.1 -0.425 15.9-171.1 -80.3 156.2 -2.0 2.5 4.7 7 7 A Q S S- 0 0 181 -2,-0.1 -1,-0.1 5,-0.0 5,-0.0 0.429 86.1 -5.2-119.9 -10.8 -1.8 3.4 8.4 8 8 A S S S- 0 0 71 0, 0.0 10,-0.1 0, 0.0 -2,-0.1 0.203 104.3 -77.1-142.6 -87.1 0.4 0.5 9.4 9 9 A H S S+ 0 0 117 8,-0.1 3,-0.2 3,-0.1 -3,-0.0 0.269 123.9 50.3-156.7 -47.2 1.3 -2.3 6.9 10 10 A S S S+ 0 0 114 1,-0.2 7,-0.1 7,-0.1 6,-0.1 0.265 83.8 98.8 -85.9 11.3 -1.7 -4.5 6.5 11 11 A D + 0 0 70 -7,-0.0 -6,-0.3 5,-0.0 -1,-0.2 -0.099 67.3 95.1 -88.9 33.6 -3.7 -1.3 5.9 12 12 A c S S- 0 0 22 4,-0.2 -3,-0.1 -3,-0.2 6,-0.0 -0.432 87.6-100.6-112.4-172.6 -3.5 -1.9 2.2 13 13 A A S S- 0 0 74 -2,-0.2 -1,-0.1 4,-0.1 -11,-0.1 0.982 83.9 -51.2 -76.1 -64.7 -5.7 -3.5 -0.5 14 14 A S S S+ 0 0 96 -3,-0.0 -2,-0.2 3,-0.0 -12,-0.0 0.267 122.6 2.7-138.0 -91.3 -4.1 -6.9 -0.9 15 15 A H S S+ 0 0 136 2,-0.0 11,-0.7 10,-0.0 12,-0.4 0.015 96.5 128.6 -97.0 27.2 -0.3 -7.4 -1.6 16 16 A a E -C 25 0A 6 9,-0.2 9,-0.3 10,-0.1 2,-0.2 -0.594 43.6-155.4 -84.4 145.4 0.3 -3.7 -1.3 17 17 A I E -C 24 0A 57 7,-3.1 7,-2.2 -2,-0.2 2,-0.4 -0.704 33.2 -81.9-114.9 167.7 3.0 -2.3 1.0 18 18 A b E +C 23 0A 47 -2,-0.2 2,-0.3 5,-0.2 5,-0.2 -0.575 65.8 146.2 -73.5 122.0 3.3 1.1 2.7 19 19 A T E > -C 22 0A 45 3,-1.0 3,-1.6 -2,-0.4 -13,-0.2 -0.865 65.7 -82.8-146.2 177.3 4.8 3.6 0.3 20 20 A F T 3 S+ 0 0 188 1,-0.3 3,-0.1 -2,-0.3 -2,-0.1 0.652 125.0 59.8 -61.5 -14.8 4.7 7.3 -0.7 21 21 A R T 3 S- 0 0 151 1,-0.1 2,-2.1 3,-0.0 -17,-0.7 -0.011 116.8-112.6-102.8 28.9 1.6 6.5 -2.7 22 22 A G E < S+aC 4 19A 16 -3,-1.6 -3,-1.0 -19,-0.1 -16,-0.9 -0.524 91.5 11.2 79.9 -77.8 -0.3 5.3 0.3 23 23 A c E S+BC 4 18A 0 -2,-2.1 -19,-0.6 -19,-1.0 2,-0.3 -0.981 71.7 153.9-140.0 125.0 -0.5 1.7 -0.7 24 24 A G E - C 0 17A 6 -7,-2.2 -7,-3.1 -2,-0.4 2,-0.2 -0.986 42.3-110.4-152.5 138.4 1.3 -0.0 -3.5 25 25 A A E - C 0 16A 35 -9,-0.3 -9,-0.2 -2,-0.3 -23,-0.1 -0.480 14.9-151.3 -70.2 133.3 2.4 -3.6 -4.3 26 26 A V 0 0 111 -11,-0.7 -1,-0.1 1,-0.2 -10,-0.1 0.817 360.0 360.0 -72.8 -30.2 6.1 -4.1 -4.2 27 27 A N 0 0 153 -12,-0.4 -1,-0.2 -3,-0.0 -2,-0.1 0.236 360.0 360.0 -94.4 360.0 5.8 -6.9 -6.8