==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFUNGAL PROTEIN 05-AUG-02 1IYC . COMPND 2 MOLECULE: SCARABAECIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR H.HEMMI,J.ISHIBASHI,T.TOMIE,M.YAMAKAWA . 36 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3025.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 182 0, 0.0 3,-0.0 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 135.4 -8.8 -2.9 -7.6 2 2 A L + 0 0 163 1,-0.1 2,-0.7 2,-0.1 0, 0.0 0.919 360.0 62.5 -73.8 -45.7 -6.6 -6.1 -7.8 3 3 A P S S- 0 0 58 0, 0.0 2,-0.9 0, 0.0 -1,-0.1 -0.744 87.0-132.0 -88.1 110.6 -3.2 -4.3 -7.9 4 4 A K + 0 0 67 -2,-0.7 13,-0.2 1,-0.2 20,-0.1 -0.461 60.1 126.0 -64.2 101.7 -2.7 -2.3 -4.7 5 5 A L + 0 0 99 -2,-0.9 -1,-0.2 11,-0.2 12,-0.1 -0.029 32.4 118.6-150.3 38.2 -1.6 1.1 -5.9 6 6 A P + 0 0 11 0, 0.0 16,-0.2 0, 0.0 11,-0.1 -0.122 19.7 160.1 -92.7-166.1 -3.8 3.8 -4.4 7 7 A D S S+ 0 0 58 13,-0.1 13,-0.3 14,-0.1 10,-0.0 0.105 78.0 35.5 179.1 -42.3 -3.1 6.7 -2.1 8 8 A D S S+ 0 0 113 11,-0.1 12,-0.0 12,-0.1 0, 0.0 -0.270 111.9 56.0-125.8 45.1 -5.9 9.3 -2.2 9 9 A K S S- 0 0 122 0, 0.0 11,-0.0 0, 0.0 -1,-0.0 0.504 126.6 -28.2-135.1 -63.8 -8.9 7.0 -2.6 10 10 A V - 0 0 89 8,-0.2 3,-0.2 2,-0.0 7,-0.1 0.558 56.5-170.3-132.2 -36.4 -9.3 4.4 0.1 11 11 A L - 0 0 65 7,-0.2 2,-0.6 1,-0.2 6,-0.1 0.845 20.4-169.5 37.9 46.6 -5.8 3.6 1.4 12 12 A I > - 0 0 63 4,-0.2 4,-0.9 1,-0.2 3,-0.3 -0.537 21.3-158.1 -69.6 114.2 -7.3 0.7 3.3 13 13 A R T 4 S+ 0 0 190 -2,-0.6 -1,-0.2 -3,-0.2 4,-0.2 0.731 70.3 103.8 -62.3 -20.1 -4.6 -0.7 5.7 14 14 A S T 4 S- 0 0 96 1,-0.2 -1,-0.2 2,-0.1 -3,-0.0 0.797 107.4 -72.1 -23.6 -85.6 -6.8 -3.8 5.5 15 15 A R T 4 S+ 0 0 192 -3,-0.3 -1,-0.2 13,-0.0 -2,-0.1 0.113 119.9 58.3-176.6 34.9 -4.6 -5.9 3.2 16 16 A S S < S+ 0 0 22 -4,-0.9 2,-0.3 13,-0.1 -4,-0.2 -0.089 86.9 68.3-167.9 52.7 -4.9 -4.4 -0.2 17 17 A N - 0 0 23 -13,-0.2 12,-0.4 -4,-0.2 -13,-0.1 -0.985 56.0-135.9-169.3 161.9 -3.9 -0.8 -0.3 18 18 A a - 0 0 0 -2,-0.3 -7,-0.2 10,-0.1 12,-0.2 -0.992 29.8-127.0-130.4 122.2 -1.1 1.8 -0.1 19 19 A P - 0 0 22 0, 0.0 3,-0.4 0, 0.0 -11,-0.1 0.165 53.8 -50.1 -56.0-180.0 -1.5 5.1 1.9 20 20 A K S S- 0 0 165 -13,-0.3 11,-0.1 1,-0.2 -13,-0.1 -0.262 121.9 -8.3 -55.6 137.3 -0.8 8.6 0.6 21 21 A G S S+ 0 0 60 -3,-0.1 -1,-0.2 1,-0.1 2,-0.2 0.872 103.8 136.0 33.2 82.0 2.5 8.9 -1.1 22 22 A K - 0 0 44 -3,-0.4 9,-0.3 -16,-0.2 2,-0.3 -0.596 46.2-129.4-136.8-163.8 3.8 5.5 -0.1 23 23 A V E -A 30 0A 69 7,-0.9 7,-1.5 -2,-0.2 -18,-0.0 -0.862 16.6-128.5-162.9 124.8 5.7 2.4 -1.4 24 24 A W E -A 29 0A 128 5,-0.3 5,-0.3 -2,-0.3 2,-0.3 -0.133 25.0-170.3 -69.0 168.2 5.0 -1.3 -1.4 25 25 A N E > -A 28 0A 70 3,-1.1 3,-1.6 10,-0.0 -1,-0.0 -0.877 52.1 -54.7-148.7 176.1 7.5 -3.9 -0.2 26 26 A G T 3 S- 0 0 62 1,-0.3 3,-0.1 -2,-0.3 -2,-0.1 0.712 135.5 -7.9 -28.0 -34.8 7.9 -7.7 -0.2 27 27 A F T 3 S+ 0 0 149 1,-0.2 -1,-0.3 0, 0.0 2,-0.2 -0.059 121.8 71.3-162.4 47.2 4.5 -7.8 1.6 28 28 A D E < -A 25 0A 59 -3,-1.6 -3,-1.1 2,-0.1 2,-0.9 -0.826 55.6-145.7-170.8 129.6 3.3 -4.3 2.5 29 29 A a E +A 24 0A 3 -12,-0.4 2,-0.3 -5,-0.3 -5,-0.3 -0.796 57.4 107.2 -99.8 94.9 2.0 -1.1 0.7 30 30 A K E S-A 23 0A 44 -7,-1.5 -7,-0.9 -2,-0.9 -8,-0.1 -0.983 70.1 -60.8-161.3 167.8 3.3 1.8 2.7 31 31 A S > - 0 0 18 -9,-0.3 3,-1.0 -2,-0.3 -9,-0.2 0.018 45.1-118.4 -49.2 158.6 5.6 4.7 2.9 32 32 A P G >> S+ 0 0 37 0, 0.0 4,-4.3 0, 0.0 3,-2.1 0.685 104.8 82.0 -75.4 -18.2 9.4 4.1 2.8 33 33 A F G 34 S+ 0 0 177 1,-0.3 -2,-0.1 2,-0.2 -11,-0.0 0.790 97.2 44.2 -56.1 -27.1 9.8 5.6 6.2 34 34 A A G <4 S+ 0 0 70 -3,-1.0 -1,-0.3 1,-0.0 -3,-0.0 -0.187 131.1 20.0-111.6 39.3 8.7 2.2 7.5 35 35 A F T <4 0 0 78 -3,-2.1 -2,-0.2 1,-0.3 -4,-0.1 0.218 360.0 360.0-167.8 -40.9 10.9 0.2 5.1 36 36 A S < 0 0 157 -4,-4.3 -1,-0.3 -5,-0.1 -5,-0.0 -0.596 360.0 360.0 -71.4 360.0 13.7 2.3 3.8