==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFREEZE PROTEIN 22-MAR-02 1J5B . COMPND 2 MOLECULE: ANTIFREEZE PROTEIN TYPE 1 ANALOGUE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR E.LIEPINSH,G.OTTING,M.M.HARDING,L.G.WARD,J.P.MACKAY, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3241.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 89.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 89.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D > 0 0 120 0, 0.0 4,-3.7 0, 0.0 5,-0.4 0.000 360.0 360.0 360.0 170.0 -5.7 24.6 1.2 2 2 A V H > + 0 0 128 1,-0.2 4,-1.5 2,-0.2 5,-0.2 0.773 360.0 50.7 -52.8 -27.2 -4.7 23.6 -2.3 3 3 A A H > S+ 0 0 71 2,-0.2 4,-1.7 3,-0.1 -1,-0.2 0.981 122.5 29.3 -67.1 -58.8 -1.0 24.0 -1.3 4 4 A S H > S+ 0 0 67 2,-0.2 4,-3.2 -3,-0.2 5,-0.2 0.912 120.3 54.4 -70.6 -43.3 -1.3 21.8 1.8 5 5 A D H X S+ 0 0 107 -4,-3.7 4,-2.3 1,-0.2 -3,-0.2 0.908 110.7 47.0 -54.7 -45.6 -4.2 19.6 0.4 6 6 A A H X S+ 0 0 58 -4,-1.5 4,-2.0 -5,-0.4 -1,-0.2 0.905 113.8 48.0 -64.9 -41.5 -2.0 18.8 -2.6 7 7 A K H X S+ 0 0 130 -4,-1.7 4,-2.5 2,-0.2 3,-0.3 0.976 113.6 46.5 -57.4 -57.9 1.0 18.1 -0.3 8 8 A A H X S+ 0 0 56 -4,-3.2 4,-2.6 1,-0.2 -2,-0.2 0.822 109.8 55.7 -54.3 -39.1 -1.1 15.9 1.9 9 9 A A H X S+ 0 0 52 -4,-2.3 4,-2.1 -5,-0.2 -1,-0.2 0.903 110.1 44.1 -62.2 -45.4 -2.5 14.2 -1.2 10 10 A A H X S+ 0 0 65 -4,-2.0 4,-2.0 -3,-0.3 -2,-0.2 0.900 115.1 49.6 -66.2 -41.5 1.0 13.2 -2.5 11 11 A E H X S+ 0 0 113 -4,-2.5 4,-2.5 2,-0.2 -2,-0.2 0.889 109.0 51.9 -60.5 -45.7 2.0 12.1 1.1 12 12 A L H X S+ 0 0 99 -4,-2.6 4,-2.9 1,-0.2 -2,-0.2 0.949 111.1 47.5 -58.5 -50.2 -1.2 10.0 1.4 13 13 A V H X S+ 0 0 93 -4,-2.1 4,-2.9 2,-0.2 -1,-0.2 0.855 109.5 54.2 -60.9 -35.8 -0.3 8.3 -1.9 14 14 A A H X S+ 0 0 66 -4,-2.0 4,-1.5 2,-0.2 -2,-0.2 0.930 112.1 43.5 -62.7 -45.9 3.3 7.8 -0.7 15 15 A A H X S+ 0 0 58 -4,-2.5 4,-2.7 2,-0.2 -2,-0.2 0.905 115.0 50.2 -62.1 -44.2 1.9 6.1 2.5 16 16 A N H X S+ 0 0 84 -4,-2.9 4,-3.2 2,-0.2 5,-0.3 0.907 103.5 58.6 -60.2 -46.0 -0.5 4.1 0.3 17 17 A A H X S+ 0 0 61 -4,-2.9 4,-2.0 2,-0.2 -1,-0.2 0.875 112.8 40.8 -55.2 -40.7 2.3 3.0 -2.1 18 18 A K H X S+ 0 0 135 -4,-1.5 4,-2.8 2,-0.2 5,-0.3 0.986 115.8 47.4 -66.0 -62.7 4.0 1.4 0.9 19 19 A A H X S+ 0 0 57 -4,-2.7 4,-1.7 1,-0.2 -2,-0.2 0.791 114.5 49.2 -52.5 -35.5 0.9 -0.1 2.5 20 20 A A H X S+ 0 0 51 -4,-3.2 4,-2.9 2,-0.2 -1,-0.2 0.940 112.2 46.0 -67.1 -53.6 -0.2 -1.4 -1.0 21 21 A A H X S+ 0 0 58 -4,-2.0 4,-1.6 -5,-0.3 -2,-0.2 0.838 114.3 50.1 -59.5 -35.3 3.3 -3.0 -1.7 22 22 A E H X S+ 0 0 126 -4,-2.8 4,-2.0 2,-0.2 -1,-0.2 0.865 111.9 47.1 -68.8 -39.1 3.1 -4.4 1.9 23 23 A L H X S+ 0 0 101 -4,-1.7 4,-3.0 -5,-0.3 -2,-0.2 0.886 108.6 55.3 -69.3 -38.1 -0.4 -5.7 1.1 24 24 A V H X S+ 0 0 92 -4,-2.9 4,-2.0 2,-0.2 -2,-0.2 0.859 107.0 51.1 -61.2 -37.4 1.0 -7.1 -2.2 25 25 A A H X S+ 0 0 62 -4,-1.6 4,-2.6 2,-0.2 -2,-0.2 0.949 111.9 45.3 -65.0 -47.6 3.6 -9.0 -0.1 26 26 A A H X S+ 0 0 57 -4,-2.0 4,-3.3 1,-0.2 -2,-0.2 0.907 113.4 51.2 -59.9 -41.6 0.8 -10.4 2.2 27 27 A N H X S+ 0 0 89 -4,-3.0 4,-2.0 2,-0.2 -1,-0.2 0.820 108.0 52.3 -61.7 -38.0 -1.2 -11.2 -1.0 28 28 A A H X S+ 0 0 63 -4,-2.0 4,-2.6 2,-0.2 -2,-0.2 0.953 114.7 42.4 -64.4 -48.5 1.9 -13.0 -2.4 29 29 A K H X S+ 0 0 134 -4,-2.6 4,-3.0 1,-0.2 -2,-0.2 0.987 115.9 47.6 -55.8 -63.7 2.1 -15.0 0.8 30 30 A A H X S+ 0 0 58 -4,-3.3 4,-2.2 1,-0.2 -1,-0.2 0.741 114.8 46.8 -55.5 -33.0 -1.6 -15.7 1.0 31 31 A A H X S+ 0 0 54 -4,-2.0 4,-2.1 2,-0.2 -1,-0.2 0.937 113.8 46.3 -72.5 -49.3 -1.8 -16.7 -2.7 32 32 A A H X S+ 0 0 57 -4,-2.6 4,-2.2 2,-0.2 -2,-0.2 0.875 115.3 48.6 -59.3 -38.9 1.3 -19.0 -2.4 33 33 A E H X S+ 0 0 94 -4,-3.0 4,-2.9 2,-0.2 -2,-0.2 0.961 109.5 51.3 -62.2 -54.0 -0.3 -20.4 0.8 34 34 A A H < S+ 0 0 68 -4,-2.2 -2,-0.2 -5,-0.2 -1,-0.2 0.799 109.1 52.4 -57.2 -32.4 -3.7 -20.9 -1.1 35 35 A V H < S+ 0 0 128 -4,-2.1 -1,-0.2 2,-0.2 -2,-0.2 0.972 112.6 42.9 -64.3 -55.3 -1.7 -22.8 -3.8 36 36 A A H < 0 0 91 -4,-2.2 -2,-0.2 1,-0.3 -3,-0.2 0.875 360.0 360.0 -58.5 -39.7 -0.1 -25.1 -1.3 37 37 A R < 0 0 238 -4,-2.9 -1,-0.3 -5,-0.1 -2,-0.2 0.517 360.0 360.0 -67.9 360.0 -3.5 -25.4 0.5