==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 16-APR-02 1J5J . COMPND 2 MOLECULE: BEKM-1 TOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS EUPEUS; . AUTHOR Y.V.KOROLOKOVA,E.V.BOCHAROV,K.ANGELO,I.V.MASLENNIKOV, . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2865.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 63.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 227 0, 0.0 34,-2.6 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 156.0 -7.2 4.8 -3.4 2 2 A P E -A 34 0A 98 0, 0.0 32,-0.2 0, 0.0 2,-0.2 -0.522 360.0-175.2 -75.0 153.6 -6.4 1.4 -4.9 3 3 A T E - 0 0 44 30,-2.2 29,-0.0 -2,-0.2 0, 0.0 -0.521 37.9-109.2-130.5-161.7 -3.4 1.1 -7.1 4 4 A D E + 0 0 133 -2,-0.2 2,-0.8 28,-0.1 30,-0.1 0.113 68.5 130.1-121.5 15.8 -1.6 -1.4 -9.3 5 5 A I E - 0 0 40 28,-0.3 28,-2.5 1,-0.1 -2,-0.2 -0.650 58.2-132.5 -77.1 110.7 1.3 -1.9 -7.0 6 6 A K E +A 32 0A 177 -2,-0.8 2,-0.3 26,-0.2 26,-0.2 -0.335 36.4 161.0 -72.6 144.0 1.6 -5.6 -6.7 7 7 A a - 0 0 13 24,-1.9 3,-0.1 1,-0.1 -1,-0.0 -0.981 38.7-156.8-156.5 154.6 2.0 -7.1 -3.2 8 8 A S S S+ 0 0 85 -2,-0.3 2,-0.3 1,-0.2 -1,-0.1 0.662 84.8 23.3 -97.9 -27.6 1.6 -10.4 -1.4 9 9 A E S > S- 0 0 108 22,-0.1 3,-0.8 1,-0.1 4,-0.5 -0.906 73.8-116.8-149.5 162.3 1.2 -8.8 2.0 10 10 A S G >> S+ 0 0 35 -2,-0.3 4,-2.0 1,-0.3 3,-1.1 0.801 105.7 64.0 -80.1 -32.3 0.2 -5.7 3.7 11 11 A Y G 34 S+ 0 0 145 1,-0.3 -1,-0.3 2,-0.2 5,-0.1 0.621 97.7 60.9 -70.0 -12.8 3.4 -4.8 5.4 12 12 A Q G <> S+ 0 0 62 -3,-0.8 4,-0.5 2,-0.1 -1,-0.3 0.816 110.2 39.4 -74.3 -33.9 4.9 -4.4 1.9 13 13 A b H <> S+ 0 0 0 -3,-1.1 4,-2.8 -4,-0.5 5,-0.3 0.871 100.9 69.7 -85.5 -40.1 2.5 -1.6 1.1 14 14 A F H X S+ 0 0 83 -4,-2.0 4,-1.8 12,-0.3 -1,-0.1 0.837 106.4 37.2 -58.1 -45.1 2.3 0.3 4.3 15 15 A P H > S+ 0 0 60 0, 0.0 4,-2.0 0, 0.0 -1,-0.3 0.791 115.2 56.2 -75.0 -29.9 5.8 1.8 4.1 16 16 A V H X S+ 0 0 62 -4,-0.5 4,-2.7 -3,-0.2 5,-0.3 0.859 110.7 44.3 -67.8 -36.5 5.6 2.2 0.4 17 17 A c H X>S+ 0 0 0 -4,-2.8 5,-2.0 2,-0.2 6,-1.5 0.884 114.2 48.6 -75.0 -40.5 2.5 4.3 0.8 18 18 A K H <5S+ 0 0 130 -4,-1.8 -2,-0.2 -5,-0.3 -1,-0.2 0.816 118.1 42.6 -70.0 -31.3 4.0 6.3 3.6 19 19 A S H <5S+ 0 0 105 -4,-2.0 -2,-0.2 -5,-0.1 -1,-0.2 0.941 125.5 29.5 -75.1 -51.8 7.1 6.8 1.6 20 20 A R H <5S+ 0 0 174 -4,-2.7 -3,-0.2 -5,-0.2 -2,-0.2 0.976 136.8 16.3 -80.1 -59.4 5.5 7.6 -1.8 21 21 A F T <5S- 0 0 90 -4,-1.3 -3,-0.2 -5,-0.3 -1,-0.1 0.657 93.9-123.7 -95.4 -19.9 2.2 9.2 -1.2 22 22 A G < + 0 0 55 -5,-2.0 -4,-0.3 1,-0.2 -3,-0.1 0.753 54.4 159.9 80.2 26.9 2.6 10.1 2.4 23 23 A K - 0 0 88 -6,-1.5 -1,-0.2 1,-0.1 3,-0.1 -0.362 49.1-122.3 -81.4 163.3 -0.5 8.2 3.4 24 24 A T S S- 0 0 105 1,-0.2 2,-0.3 12,-0.2 -6,-0.1 0.860 84.0 -12.1 -75.8 -37.6 -1.1 7.0 7.0 25 25 A N - 0 0 67 11,-2.5 11,-2.6 -8,-0.1 2,-0.3 -0.973 57.9-152.8-158.3 161.2 -1.4 3.3 6.2 26 26 A G E -B 35 0A 3 -2,-0.3 2,-0.3 9,-0.2 -12,-0.3 -0.964 4.8-162.8-141.4 159.8 -1.8 0.9 3.3 27 27 A R E -B 34 0A 152 7,-2.3 7,-2.1 -2,-0.3 2,-1.2 -0.998 28.4-115.0-147.5 141.7 -3.2 -2.6 2.9 28 28 A a E -B 33 0A 23 -2,-0.3 2,-0.7 5,-0.2 3,-0.3 -0.652 35.6-170.7 -83.1 99.3 -2.8 -5.3 0.2 29 29 A V E > -B 32 0A 63 3,-2.4 3,-1.5 -2,-1.2 -22,-0.1 -0.836 69.5 -24.1 -96.4 112.2 -6.3 -5.5 -1.4 30 30 A N T 3 S- 0 0 154 -2,-0.7 -1,-0.2 1,-0.3 3,-0.1 0.842 128.1 -48.5 58.3 36.2 -6.6 -8.5 -3.7 31 31 A G T 3 S+ 0 0 28 -3,-0.3 -24,-1.9 1,-0.2 2,-0.3 0.542 125.3 92.7 86.1 8.5 -2.9 -8.6 -4.3 32 32 A F E < S-AB 6 29A 94 -3,-1.5 -3,-2.4 -26,-0.2 -26,-0.2 -0.997 79.9-104.9-138.9 143.1 -2.6 -4.9 -5.0 33 33 A b E - B 0 28A 4 -28,-2.5 -30,-2.2 -2,-0.3 2,-0.4 -0.324 27.1-168.7 -70.9 140.1 -1.8 -2.0 -2.7 34 34 A D E -AB 2 27A 37 -7,-2.1 -7,-2.3 -32,-0.2 2,-0.4 -0.992 10.8-156.3-127.2 126.3 -4.6 0.3 -1.5 35 35 A c E B 0 26A 4 -34,-2.6 -9,-0.2 -2,-0.4 -21,-0.0 -0.788 360.0 360.0-108.9 141.6 -3.4 3.4 0.3 36 36 A F 0 0 117 -11,-2.6 -11,-2.5 -2,-0.4 -12,-0.2 -0.979 360.0 360.0-160.2 360.0 -5.4 5.5 2.8