==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNOGLOBULIN 11-SEP-06 2J53 . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP.; . AUTHOR D.J.WILTON,R.B.TUNNICLIFFE,Y.O.KAMATARI,K.AKASAKA, . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3359.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 67.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 21.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 115 0, 0.0 19,-0.1 0, 0.0 17,-0.1 0.000 360.0 360.0 360.0 123.3 -13.3 0.7 3.5 2 2 A T + 0 0 116 17,-0.2 2,-0.4 15,-0.0 17,-0.2 -0.321 360.0 176.5 -57.3 131.2 -10.6 -1.0 5.7 3 3 A Y E -A 18 0A 7 15,-2.8 15,-3.1 23,-0.0 2,-0.4 -0.998 13.9-170.1-142.3 139.4 -7.4 -1.2 3.6 4 4 A K E -Ab 17 51A 45 46,-0.7 48,-4.6 -2,-0.4 2,-0.4 -0.982 1.3-169.1-131.0 141.3 -3.8 -2.5 4.5 5 5 A L E -Ab 16 52A 0 11,-2.8 11,-1.9 -2,-0.4 2,-0.9 -0.987 18.8-137.8-130.9 137.7 -0.6 -2.3 2.5 6 6 A I E -Ab 15 53A 60 46,-1.7 2,-2.0 -2,-0.4 48,-1.6 -0.786 13.9-154.0 -94.9 103.7 2.8 -4.1 3.2 7 7 A L E +Ab 14 54A 2 7,-2.1 7,-2.7 -2,-0.9 2,-1.2 -0.502 25.0 167.0 -77.6 83.0 5.6 -1.5 2.6 8 8 A N E +Ab 13 55A 55 -2,-2.0 48,-1.1 46,-1.4 5,-0.2 -0.475 12.3 173.0 -95.5 66.4 8.3 -4.0 1.7 9 9 A G - 0 0 0 3,-2.3 30,-0.1 -2,-1.2 32,-0.1 -0.037 52.5 -89.9 -62.0 177.7 10.9 -1.5 0.3 10 10 A K S S- 0 0 120 1,-0.1 -1,-0.1 45,-0.1 3,-0.0 0.988 117.6 -11.1 -56.1 -57.6 14.4 -2.7 -0.6 11 11 A T S S+ 0 0 130 1,-0.1 2,-1.2 2,-0.0 -1,-0.1 0.686 123.7 86.1-111.0 -33.1 15.6 -2.0 3.0 12 12 A L + 0 0 67 26,-0.1 -3,-2.3 -4,-0.1 2,-0.5 -0.547 59.8 176.4 -72.6 99.4 12.7 -0.0 4.3 13 13 A K E +A 8 0A 118 -2,-1.2 2,-0.3 -5,-0.2 -5,-0.2 -0.912 12.2 142.1-108.7 124.7 10.3 -2.8 5.5 14 14 A G E -A 7 0A 33 -7,-2.7 -7,-2.1 -2,-0.5 2,-0.3 -0.943 38.7-139.1-161.9 138.8 7.1 -1.7 7.3 15 15 A E E -A 6 0A 104 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.739 27.2-178.7 -97.2 146.7 3.5 -2.9 7.5 16 16 A T E -A 5 0A 32 -11,-1.9 -11,-2.8 -2,-0.3 2,-0.3 -0.999 14.4-162.5-148.6 147.2 0.7 -0.3 7.4 17 17 A T E +A 4 0A 108 -2,-0.3 2,-0.3 -13,-0.3 -13,-0.3 -0.861 19.9 152.9-123.4 159.1 -3.1 -0.1 7.6 18 18 A T E -A 3 0A 50 -15,-3.1 -15,-2.8 -2,-0.3 2,-0.2 -0.952 31.4-112.7-166.4-174.6 -5.6 2.7 6.7 19 19 A E + 0 0 100 -2,-0.3 2,-0.2 -17,-0.2 -17,-0.2 -0.732 30.9 154.8-126.6 177.3 -9.1 3.5 5.5 20 20 A A - 0 0 15 -2,-0.2 -2,-0.0 1,-0.1 4,-0.0 -0.855 49.5-105.1 168.4 156.8 -10.7 5.0 2.4 21 21 A V S S+ 0 0 111 -2,-0.2 -1,-0.1 2,-0.0 2,-0.1 0.995 100.2 0.2 -64.7 -60.4 -14.0 5.1 0.4 22 22 A D S > S- 0 0 68 -3,-0.1 4,-1.1 1,-0.0 5,-0.1 -0.393 81.9 -98.5-113.9-165.5 -12.8 2.7 -2.4 23 23 A A H > S+ 0 0 23 2,-0.2 4,-3.1 3,-0.1 5,-0.3 0.797 117.2 61.6 -88.1 -29.8 -9.6 0.9 -3.2 24 24 A A H > S+ 0 0 53 2,-0.2 4,-2.5 1,-0.2 5,-0.2 0.939 107.0 45.0 -62.3 -44.2 -8.4 3.5 -5.7 25 25 A T H > S+ 0 0 53 2,-0.2 4,-3.9 1,-0.2 5,-0.3 0.965 113.2 50.2 -64.9 -49.1 -8.3 6.2 -2.9 26 26 A A H X S+ 0 0 0 -4,-1.1 4,-4.2 1,-0.2 5,-0.3 0.966 111.5 48.2 -53.6 -53.1 -6.6 3.7 -0.5 27 27 A E H X S+ 0 0 44 -4,-3.1 4,-4.4 2,-0.2 5,-0.2 0.942 114.2 47.5 -54.3 -45.4 -3.9 2.9 -3.2 28 28 A K H X S+ 0 0 96 -4,-2.5 4,-3.4 -5,-0.3 -2,-0.2 0.979 114.8 44.8 -60.4 -53.6 -3.5 6.7 -3.8 29 29 A V H X S+ 0 0 67 -4,-3.9 4,-2.1 1,-0.2 5,-0.3 0.948 119.0 43.5 -56.6 -46.5 -3.2 7.4 -0.0 30 30 A F H X S+ 0 0 7 -4,-4.2 4,-3.5 -5,-0.3 5,-0.3 0.958 113.2 51.7 -64.9 -47.4 -0.9 4.4 0.4 31 31 A K H X S+ 0 0 52 -4,-4.4 4,-4.2 -5,-0.3 5,-0.3 0.954 110.7 49.0 -54.8 -49.7 1.1 5.3 -2.8 32 32 A Q H X S+ 0 0 112 -4,-3.4 4,-5.1 -5,-0.2 5,-0.4 0.988 116.3 39.8 -54.6 -67.5 1.5 8.9 -1.5 33 33 A Y H X S+ 0 0 105 -4,-2.1 4,-3.7 2,-0.2 6,-0.3 0.936 118.4 49.9 -48.6 -48.8 2.8 7.9 2.0 34 34 A A H <>S+ 0 0 0 -4,-3.5 5,-4.5 -5,-0.3 -1,-0.2 0.975 117.6 39.4 -56.0 -51.8 4.8 5.0 0.4 35 35 A N H ><5S+ 0 0 70 -4,-4.2 3,-2.7 -5,-0.3 -2,-0.2 0.968 115.2 52.7 -62.4 -48.7 6.3 7.5 -2.1 36 36 A D H 3<5S+ 0 0 103 -4,-5.1 -2,-0.2 -5,-0.3 -1,-0.2 0.918 110.5 48.2 -53.0 -41.3 6.6 10.2 0.7 37 37 A N T 3<5S- 0 0 63 -4,-3.7 -1,-0.3 -5,-0.4 -2,-0.2 0.478 124.9-109.0 -79.1 2.1 8.4 7.6 2.7 38 38 A G T < 5S+ 0 0 58 -3,-2.7 2,-0.5 1,-0.2 -3,-0.3 0.796 78.0 132.8 77.4 26.0 10.6 6.9 -0.4 39 39 A V < + 0 0 0 -5,-4.5 -1,-0.2 -6,-0.3 2,-0.2 -0.936 22.3 94.6-115.3 128.8 8.9 3.5 -1.0 40 40 A D + 0 0 52 -2,-0.5 2,-1.1 -3,-0.1 15,-0.1 -0.781 18.3 115.7-172.5-142.6 7.6 2.3 -4.4 41 41 A G S S+ 0 0 55 -2,-0.2 2,-0.3 15,-0.2 15,-0.2 -0.718 83.4 41.6 94.8 -92.1 8.9 0.3 -7.4 42 42 A E E -C 55 0A 103 13,-4.4 13,-1.4 -2,-1.1 2,-0.4 -0.674 65.6-168.4 -91.2 146.0 6.5 -2.8 -7.5 43 43 A W E +C 54 0A 56 -2,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.806 15.2 162.4-137.0 97.4 2.8 -2.3 -6.9 44 44 A T E +C 53 0A 62 9,-2.4 9,-3.1 -2,-0.4 2,-0.3 -0.868 4.0 166.6-115.6 149.0 0.7 -5.5 -6.3 45 45 A Y E -C 52 0A 80 -2,-0.3 2,-0.3 7,-0.2 7,-0.2 -0.974 15.6-156.9-158.7 142.7 -2.9 -5.7 -4.8 46 46 A D - 0 0 63 5,-1.6 5,-0.2 -2,-0.3 4,-0.1 -0.899 14.4-151.0-123.8 153.6 -5.6 -8.4 -4.6 47 47 A A S S+ 0 0 70 -2,-0.3 -1,-0.1 3,-0.2 5,-0.0 0.701 94.4 60.1 -94.7 -21.4 -9.4 -8.1 -4.1 48 48 A A S S+ 0 0 89 1,-0.2 -1,-0.1 3,-0.1 -2,-0.0 0.974 118.5 28.5 -70.8 -51.9 -9.8 -11.5 -2.4 49 49 A T S S- 0 0 92 2,-0.1 -1,-0.2 1,-0.0 -2,-0.2 0.676 97.9-145.0 -80.5 -15.4 -7.4 -10.7 0.5 50 50 A K + 0 0 77 1,-0.2 -46,-0.7 -4,-0.1 2,-0.3 0.780 57.4 126.4 58.1 23.8 -8.4 -7.0 0.1 51 51 A T E -b 4 0A 33 -5,-0.2 -5,-1.6 -48,-0.1 2,-0.2 -0.866 55.7-133.3-114.5 148.5 -4.8 -6.2 1.1 52 52 A F E -bC 5 45A 7 -48,-4.6 -46,-1.7 -2,-0.3 2,-0.4 -0.663 18.2-163.9 -96.5 153.8 -2.3 -4.0 -0.8 53 53 A T E +bC 6 44A 37 -9,-3.1 -9,-2.4 -2,-0.2 2,-0.3 -0.998 10.7 171.5-139.2 138.5 1.4 -5.1 -1.5 54 54 A V E +bC 7 43A 1 -48,-1.6 -46,-1.4 -2,-0.4 2,-0.3 -0.981 0.5 170.8-143.0 155.5 4.4 -3.0 -2.6 55 55 A T E bC 8 42A 45 -13,-1.4 -13,-4.4 -2,-0.3 -46,-0.3 -0.976 360.0 360.0-163.6 149.0 8.2 -3.6 -2.9 56 56 A E 0 0 75 -48,-1.1 -15,-0.2 -2,-0.3 -17,-0.0 -0.725 360.0 360.0 -95.7 360.0 11.3 -1.9 -4.4