==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 18-MAY-01 1J7Q . COMPND 2 MOLECULE: CALCIUM VECTOR PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BRANCHIOSTOMA LANCEOLATUM; . AUTHOR I.THERET,S.BALADI,J.A.COX,J.GALLAY,H.SAKAMOTO,C.T.CRAESCU . 86 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5953.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 57.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 37 43.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 5 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 137 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 104.8 22.3 -16.0 -8.2 2 2 A A + 0 0 81 1,-0.0 2,-0.2 2,-0.0 0, 0.0 0.883 360.0 57.1 -98.8 -44.8 24.2 -14.6 -11.2 3 3 A P - 0 0 100 0, 0.0 2,-0.4 0, 0.0 40,-0.1 -0.567 67.1-159.0 -86.7 151.9 26.6 -17.3 -12.3 4 4 A K - 0 0 152 -2,-0.2 2,-0.3 2,-0.0 38,-0.0 -0.974 2.7-161.9-134.2 125.6 25.3 -20.8 -13.3 5 5 A A - 0 0 74 -2,-0.4 2,-0.3 39,-0.0 39,-0.2 -0.775 12.1-179.4-104.7 151.1 27.3 -24.1 -13.4 6 6 A R - 0 0 109 37,-2.3 2,-0.2 -2,-0.3 -2,-0.0 -0.974 25.6-110.1-146.1 158.7 26.3 -27.3 -15.2 7 7 A A - 0 0 71 -2,-0.3 8,-0.1 1,-0.1 37,-0.0 -0.522 39.3-104.2 -88.1 159.2 27.4 -30.8 -15.8 8 8 A L + 0 0 119 -2,-0.2 -1,-0.1 4,-0.1 3,-0.1 -0.054 56.8 114.4 -76.2 177.5 28.7 -32.1 -19.2 9 9 A G S S- 0 0 21 1,-0.1 3,-0.4 0, 0.0 4,-0.1 -0.989 81.7 -43.0 160.6-151.9 26.8 -34.4 -21.7 10 10 A P S > S+ 0 0 123 0, 0.0 3,-1.3 0, 0.0 -1,-0.1 0.887 134.8 53.3 -78.1 -38.2 25.4 -34.2 -25.2 11 11 A E T 3> S+ 0 0 104 1,-0.3 4,-2.0 2,-0.2 3,-0.3 0.298 72.0 102.4 -80.7 9.5 24.0 -30.7 -24.5 12 12 A E H 3> S+ 0 0 2 -3,-0.4 4,-3.1 1,-0.2 -1,-0.3 0.728 75.2 69.5 -53.5 -20.5 27.4 -29.6 -23.4 13 13 A K H <> S+ 0 0 87 -3,-1.3 4,-2.4 2,-0.2 5,-0.3 0.952 95.9 47.1 -56.4 -51.1 26.9 -28.2 -26.9 14 14 A D H > S+ 0 0 68 -3,-0.3 4,-2.1 2,-0.2 5,-0.2 0.919 111.4 54.3 -57.4 -39.3 24.2 -25.9 -25.4 15 15 A E H X S+ 0 0 21 -4,-2.0 4,-3.2 2,-0.2 5,-0.4 0.977 107.9 46.5 -55.0 -57.3 26.8 -25.1 -22.7 16 16 A C H X S+ 0 0 5 -4,-3.1 4,-1.7 1,-0.2 -2,-0.2 0.898 118.6 40.5 -61.0 -40.5 29.6 -24.1 -25.0 17 17 A M H X S+ 0 0 60 -4,-2.4 4,-0.9 2,-0.2 -1,-0.2 0.750 113.7 55.4 -79.8 -16.9 27.3 -21.8 -27.2 18 18 A K H X S+ 0 0 124 -4,-2.1 4,-2.1 -5,-0.3 -2,-0.2 0.922 113.2 39.8 -76.6 -44.0 25.5 -20.5 -24.0 19 19 A I H X>S+ 0 0 3 -4,-3.2 4,-3.0 2,-0.2 5,-0.8 0.842 110.5 59.9 -67.7 -32.7 28.8 -19.4 -22.5 20 20 A F H X5S+ 0 0 16 -4,-1.7 4,-0.8 -5,-0.4 -2,-0.2 0.856 108.6 46.3 -55.5 -32.1 29.7 -18.3 -26.0 21 21 A D H <5S+ 0 0 67 -4,-0.9 4,-0.4 3,-0.2 -2,-0.2 0.855 117.7 40.2 -80.2 -36.9 26.6 -16.1 -25.5 22 22 A I H <5S+ 0 0 111 -4,-2.1 4,-0.5 2,-0.1 3,-0.2 0.966 131.6 23.6 -71.5 -55.5 27.6 -14.9 -22.1 23 23 A F H <5S+ 0 0 28 -4,-3.0 4,-0.3 1,-0.2 7,-0.2 0.829 126.4 43.1 -80.5 -36.5 31.3 -14.4 -22.7 24 24 A D S - 0 0 26 0, 0.0 4,-2.2 0, 0.0 36,-0.2 -0.029 36.3 -81.6 -88.4-174.7 40.9 -14.8 -24.9 33 33 A V H > S+ 0 0 38 34,-0.5 4,-1.8 1,-0.2 26,-0.1 0.929 128.6 54.7 -48.2 -52.1 42.8 -17.4 -22.7 34 34 A S H > S+ 0 0 68 1,-0.2 4,-2.2 2,-0.2 5,-0.3 0.909 105.8 52.8 -54.3 -40.9 41.7 -15.6 -19.5 35 35 A D H > S+ 0 0 39 1,-0.2 4,-3.3 2,-0.2 -1,-0.2 0.950 105.2 54.9 -58.2 -43.2 38.1 -15.9 -20.6 36 36 A T H X S+ 0 0 1 -4,-2.2 4,-2.5 2,-0.2 5,-0.3 0.844 106.2 53.7 -58.1 -31.2 38.7 -19.7 -21.1 37 37 A M H X S+ 0 0 80 -4,-1.8 4,-2.0 2,-0.2 5,-0.3 0.980 113.3 39.0 -68.3 -56.2 39.9 -19.8 -17.4 38 38 A D H X>S+ 0 0 78 -4,-2.2 4,-2.4 2,-0.2 5,-0.6 0.912 117.8 55.5 -55.6 -40.5 36.8 -18.2 -16.0 39 39 A M H X>S+ 0 0 0 -4,-3.3 4,-2.6 -5,-0.3 5,-0.6 0.991 113.0 34.3 -56.8 -68.5 34.8 -20.2 -18.5 40 40 A L H <5S+ 0 0 17 -4,-2.5 4,-0.4 1,-0.2 -1,-0.2 0.795 120.0 52.9 -66.3 -22.1 35.9 -23.7 -17.8 41 41 A T H <5S+ 0 0 106 -4,-2.0 -1,-0.2 -5,-0.3 -2,-0.2 0.975 124.6 18.7 -73.7 -53.5 36.2 -23.0 -14.0 42 42 A K H <5S+ 0 0 96 -4,-2.4 -3,-0.2 -5,-0.3 -2,-0.2 0.762 118.1 59.4 -95.4 -25.6 32.7 -21.6 -13.3 43 43 A L T < S- 0 0 114 -2,-0.1 4,-0.7 1,-0.0 3,-0.3 -0.993 72.6 -5.1-147.9 140.8 40.1 -34.9 -19.2 49 49 A K H > S- 0 0 164 -2,-0.3 4,-0.6 1,-0.2 -2,-0.1 -0.121 93.4 -61.0 75.8-175.5 43.7 -35.5 -20.1 50 50 A R H > S+ 0 0 162 1,-0.2 4,-0.8 2,-0.2 -1,-0.2 0.620 120.9 69.6 -86.4 -10.4 46.2 -33.1 -21.7 51 51 A E H > S+ 0 0 87 -3,-0.3 4,-1.3 2,-0.2 -1,-0.2 0.834 95.9 51.8 -83.2 -29.2 44.3 -32.4 -24.9 52 52 A T H X S+ 0 0 2 -4,-0.7 4,-2.0 2,-0.2 -1,-0.2 0.857 103.4 60.3 -67.6 -31.3 41.5 -30.5 -23.3 53 53 A E H X S+ 0 0 61 -4,-0.6 4,-2.9 1,-0.2 5,-0.3 0.868 96.0 61.6 -53.0 -37.3 44.4 -28.6 -21.9 54 54 A A H X S+ 0 0 32 -4,-0.8 4,-3.2 2,-0.2 5,-0.4 0.927 98.0 55.5 -51.8 -48.5 45.0 -28.0 -25.6 55 55 A I H X S+ 0 0 5 -4,-1.3 4,-1.8 1,-0.2 -2,-0.2 0.983 111.7 43.6 -41.3 -59.8 41.6 -26.2 -25.5 56 56 A M H X S+ 0 0 37 -4,-2.0 4,-0.5 1,-0.2 -2,-0.2 0.855 121.3 37.2 -63.0 -39.1 42.9 -24.0 -22.8 57 57 A K H X S+ 0 0 116 -4,-2.9 4,-0.6 1,-0.2 3,-0.3 0.890 114.4 52.7 -81.8 -41.0 46.3 -23.3 -24.3 58 58 A E H < S+ 0 0 87 -4,-3.2 -2,-0.2 -5,-0.3 -3,-0.2 0.782 90.8 78.0 -67.4 -26.3 45.3 -23.1 -28.0 59 59 A A H < S+ 0 0 0 -4,-1.8 -1,-0.2 -5,-0.4 -2,-0.1 0.952 105.4 32.6 -46.5 -57.2 42.6 -20.5 -27.3 60 60 A R H < S- 0 0 69 -4,-0.5 -2,-0.1 -3,-0.3 4,-0.1 0.916 104.9-140.3 -60.5 -94.4 45.3 -17.8 -27.1 61 61 A G < - 0 0 30 -4,-0.6 -1,-0.2 1,-0.1 -2,-0.1 -0.997 29.0 -54.5 161.8-159.9 47.9 -18.9 -29.6 62 62 A P S S+ 0 0 144 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.922 129.7 14.8 -84.7 -46.7 51.7 -19.1 -30.2 63 63 A K S S- 0 0 156 -3,-0.1 -2,-0.1 0, 0.0 -3,-0.0 0.887 85.5-153.4 -93.0 -49.6 52.7 -15.5 -29.6 64 64 A G + 0 0 24 -4,-0.1 -3,-0.1 4,-0.0 -4,-0.0 0.940 41.5 141.5 79.2 48.7 49.6 -14.1 -27.8 65 65 A D S S- 0 0 109 -5,-0.1 -4,-0.0 1,-0.0 -5,-0.0 0.933 94.7 -24.1 -81.1 -55.2 49.6 -10.4 -28.6 66 66 A K S S+ 0 0 142 -6,-0.1 2,-0.5 2,-0.0 -1,-0.0 -0.121 91.3 148.4-147.4 48.1 45.9 -10.2 -29.1 67 67 A K + 0 0 69 2,-0.0 -34,-0.5 -6,-0.0 2,-0.3 -0.707 16.3 160.2 -90.9 129.2 44.7 -13.7 -30.0 68 68 A N - 0 0 34 -2,-0.5 2,-0.9 -36,-0.2 5,-0.1 -0.941 43.9-105.4-142.1 161.4 41.3 -14.7 -28.8 69 69 A I B +A 31 0A 0 -38,-3.3 -38,-2.6 -2,-0.3 -9,-0.1 -0.767 47.6 178.4 -98.9 108.2 38.6 -17.2 -29.6 70 70 A G > - 0 0 8 -2,-0.9 4,-0.9 -40,-0.3 -40,-0.2 0.164 45.8 -27.2 -95.7-155.9 35.8 -15.6 -31.5 71 71 A P T 4 S+ 0 0 89 0, 0.0 4,-0.3 0, 0.0 -41,-0.1 0.679 132.7 8.1 -27.2 -55.4 32.4 -16.5 -33.1 72 72 A E T >> S+ 0 0 126 2,-0.1 4,-2.8 3,-0.1 3,-0.8 0.845 105.3 80.3-103.4 -39.0 33.2 -20.2 -33.9 73 73 A E H 3> S+ 0 0 60 1,-0.2 4,-2.4 2,-0.2 5,-0.4 0.821 94.1 52.0 -46.0 -41.4 36.5 -21.4 -32.4 74 74 A W H 3X S+ 0 0 6 -4,-0.9 4,-1.4 1,-0.2 -1,-0.2 0.915 117.7 36.7 -71.1 -34.2 35.2 -22.1 -28.9 75 75 A L H <> S+ 0 0 30 -3,-0.8 4,-2.9 -4,-0.3 -1,-0.2 0.791 114.0 57.3 -82.1 -27.7 32.2 -24.2 -30.1 76 76 A T H X S+ 0 0 38 -4,-2.8 4,-2.3 2,-0.2 5,-0.2 0.966 114.1 37.2 -70.0 -46.1 34.2 -25.9 -33.0 77 77 A L H X S+ 0 0 15 -4,-2.4 4,-3.3 -5,-0.3 5,-0.2 0.924 116.7 55.1 -66.1 -35.9 36.8 -27.2 -30.6 78 78 A C H X S+ 0 0 9 -4,-1.4 4,-2.1 -5,-0.4 5,-0.3 0.922 109.7 46.5 -61.3 -38.3 34.0 -27.8 -28.1 79 79 A S H X>S+ 0 0 22 -4,-2.9 5,-2.1 2,-0.2 4,-1.9 0.913 117.0 42.5 -69.2 -41.3 32.2 -29.9 -30.7 80 80 A K H <5S+ 0 0 76 -4,-2.3 -2,-0.2 3,-0.2 -1,-0.2 0.852 112.5 56.0 -69.8 -34.0 35.3 -31.8 -31.6 81 81 A W H <5S+ 0 0 79 -4,-3.3 -2,-0.2 -5,-0.2 -1,-0.2 0.912 121.1 27.0 -62.0 -42.6 36.2 -32.1 -27.9 82 82 A V H <5S+ 0 0 58 -4,-2.1 -2,-0.2 -5,-0.2 -3,-0.2 0.950 143.3 9.0 -87.4 -58.7 32.9 -33.8 -27.1 83 83 A R T <5S- 0 0 166 -4,-1.9 -3,-0.2 -5,-0.3 -4,-0.1 0.835 94.8-130.5 -93.1 -35.6 31.7 -35.6 -30.2 84 84 A Q < - 0 0 124 -5,-2.1 2,-0.7 1,-0.1 -4,-0.2 0.682 8.2-145.4 85.5 111.9 34.7 -35.3 -32.5 85 85 A D 0 0 59 -9,-0.2 -1,-0.1 0, 0.0 -5,-0.1 -0.659 360.0 360.0-110.7 77.7 34.3 -34.1 -36.1 86 86 A D 0 0 198 -2,-0.7 0, 0.0 -6,-0.1 0, 0.0 -0.958 360.0 360.0-121.6 360.0 36.8 -36.1 -38.2