==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 09-JUL-01 1JJR . COMPND 2 MOLECULE: THYROID AUTOANTIGEN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR Z.ZHANG,Y.CHEN . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4098.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32 59.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 42.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 44 A K 0 0 227 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -30.6 -9.8 8.5 8.0 2 45 A V + 0 0 65 1,-0.2 0, 0.0 2,-0.0 0, 0.0 0.817 360.0 150.5 41.4 38.3 -8.3 6.5 5.1 3 46 A E - 0 0 142 1,-0.0 -1,-0.2 25,-0.0 0, 0.0 0.401 68.9-107.2 -77.8 3.5 -5.0 6.6 7.2 4 47 A Y + 0 0 25 28,-0.0 28,-0.1 26,-0.0 -1,-0.0 0.913 68.2 151.0 70.8 44.4 -4.1 3.3 5.5 5 48 A S S S- 0 0 62 28,-0.0 -1,-0.0 27,-0.0 0, 0.0 0.901 73.4 -86.4 -71.8 -42.1 -4.7 1.2 8.7 6 49 A E S > S+ 0 0 88 27,-0.0 4,-4.2 0, 0.0 5,-0.2 -0.068 115.3 77.5 163.1 -42.8 -5.6 -1.9 6.7 7 50 A E H > S+ 0 0 96 2,-0.2 4,-2.8 1,-0.2 5,-0.2 0.965 102.6 39.9 -55.2 -58.7 -9.3 -1.7 5.9 8 51 A E H > S+ 0 0 56 1,-0.2 4,-3.2 2,-0.2 -1,-0.2 0.901 117.3 52.7 -58.9 -39.1 -8.9 0.8 3.1 9 52 A L H > S+ 0 0 0 2,-0.2 4,-3.7 1,-0.2 5,-0.2 0.960 108.6 47.8 -60.2 -52.9 -5.8 -1.1 2.1 10 53 A K H X S+ 0 0 100 -4,-4.2 4,-2.2 1,-0.2 -2,-0.2 0.932 114.6 47.0 -53.6 -48.2 -7.7 -4.4 2.0 11 54 A T H X S+ 0 0 66 -4,-2.8 4,-1.5 -5,-0.2 5,-0.4 0.925 113.4 48.8 -59.4 -45.6 -10.5 -2.8 -0.0 12 55 A H H X>S+ 0 0 14 -4,-3.2 4,-2.6 1,-0.2 5,-1.2 0.939 109.2 52.0 -59.6 -49.1 -7.9 -1.2 -2.3 13 56 A I H <5S+ 0 0 23 -4,-3.7 -1,-0.2 3,-0.2 -2,-0.2 0.880 106.5 58.0 -55.3 -40.6 -6.1 -4.5 -2.8 14 57 A S H <5S+ 0 0 102 -4,-2.2 -2,-0.2 -5,-0.2 -1,-0.2 0.983 120.9 20.5 -53.3 -77.0 -9.4 -6.1 -3.7 15 58 A K H <5S- 0 0 138 -4,-1.5 -2,-0.2 1,-0.0 -3,-0.1 0.938 111.1-113.1 -61.1 -49.3 -10.5 -3.9 -6.7 16 59 A G T <5S+ 0 0 53 -4,-2.6 3,-0.3 -5,-0.4 -3,-0.2 0.664 78.7 122.2 118.7 31.8 -6.9 -2.7 -7.4 17 60 A T > < + 0 0 33 -5,-1.2 3,-1.9 -6,-0.2 4,-0.5 0.491 50.1 90.8 -98.2 -6.2 -7.0 1.0 -6.6 18 61 A L T 3 S+ 0 0 4 -6,-0.7 3,-0.2 1,-0.3 -1,-0.2 0.760 81.6 62.3 -59.9 -22.5 -4.2 0.7 -4.0 19 62 A G T 3 S+ 0 0 30 -3,-0.3 -1,-0.3 -7,-0.2 -2,-0.1 0.119 85.1 79.8 -90.8 22.4 -1.9 1.4 -6.8 20 63 A K S < S+ 0 0 157 -3,-1.9 -1,-0.2 2,-0.1 -2,-0.2 0.908 72.7 80.3 -90.4 -54.9 -3.4 4.9 -7.5 21 64 A F S S- 0 0 50 -4,-0.5 0, 0.0 -3,-0.2 0, 0.0 0.003 86.1-105.9 -49.4 158.3 -1.8 6.9 -4.8 22 65 A T > - 0 0 68 1,-0.1 4,-1.5 4,-0.0 -1,-0.1 0.090 35.9 -93.2 -73.9-168.0 1.8 8.2 -5.3 23 66 A V H > S+ 0 0 29 2,-0.2 4,-3.0 1,-0.2 5,-0.2 0.927 121.8 57.0 -77.4 -47.5 4.9 6.9 -3.7 24 67 A P H > S+ 0 0 89 0, 0.0 4,-0.5 0, 0.0 -1,-0.2 0.836 113.8 42.6 -52.1 -34.1 5.0 9.4 -0.8 25 68 A M H >> S+ 0 0 70 2,-0.2 4,-1.0 1,-0.1 3,-0.7 0.876 110.9 54.2 -80.0 -40.5 1.5 8.1 0.1 26 69 A L H 3X S+ 0 0 3 -4,-1.5 4,-1.9 1,-0.2 3,-0.3 0.899 99.8 62.0 -60.3 -41.5 2.3 4.4 -0.5 27 70 A K H 3X S+ 0 0 84 -4,-3.0 4,-2.7 1,-0.2 -1,-0.2 0.842 96.2 62.8 -52.9 -34.9 5.3 4.7 1.9 28 71 A E H S+ 0 0 1 -4,-1.9 4,-3.2 1,-0.2 5,-1.4 0.896 106.5 53.7 -60.3 -41.3 4.4 0.4 4.3 31 74 A R H <5S+ 0 0 195 -4,-2.7 -1,-0.2 1,-0.2 -2,-0.2 0.860 112.3 44.5 -61.8 -36.0 5.4 2.3 7.4 32 75 A A H <5S+ 0 0 63 -4,-1.8 -1,-0.2 -5,-0.2 -2,-0.2 0.797 118.1 43.9 -78.0 -30.3 2.2 1.0 9.1 33 76 A Y H <5S- 0 0 21 -4,-2.2 -2,-0.2 -5,-0.2 -3,-0.2 0.772 104.3-130.1 -84.3 -29.1 2.7 -2.5 7.8 34 77 A G T <5 + 0 0 56 -4,-3.2 -3,-0.2 -5,-0.2 -4,-0.1 0.734 55.9 144.7 84.8 24.0 6.4 -2.6 8.6 35 78 A L < - 0 0 52 -5,-1.4 -1,-0.1 -6,-0.1 9,-0.0 -0.029 59.2-115.5 -81.2-170.8 7.4 -3.7 5.1 36 79 A K - 0 0 198 8,-0.1 -1,-0.1 0, 0.0 8,-0.1 0.795 44.4-170.0 -96.9 -37.6 10.5 -2.8 3.1 37 80 A S - 0 0 28 6,-0.2 2,-0.3 7,-0.1 7,-0.1 0.043 19.6 -97.3 68.2 176.6 8.9 -1.0 0.2 38 81 A G - 0 0 11 3,-0.2 2,-2.2 -15,-0.1 6,-0.2 -0.988 15.5-120.1-137.4 146.2 10.6 0.1 -3.0 39 82 A L S S+ 0 0 162 -2,-0.3 -2,-0.0 1,-0.2 -16,-0.0 -0.426 101.8 49.4 -80.8 65.6 12.2 3.3 -4.2 40 83 A K S S- 0 0 176 -2,-2.2 -1,-0.2 1,-0.1 -17,-0.1 0.139 100.0-103.9-157.4 -73.4 9.9 3.5 -7.3 41 84 A K S >> S+ 0 0 86 -18,-0.1 3,-2.6 -19,-0.1 4,-0.8 -0.435 103.3 53.8 168.9 -83.8 6.1 3.2 -6.8 42 85 A Q H 3> S+ 0 0 146 1,-0.3 4,-2.0 2,-0.2 3,-0.2 0.803 98.0 73.6 -47.6 -31.8 4.4 -0.1 -7.8 43 86 A E H 3> S+ 0 0 98 1,-0.2 4,-2.0 2,-0.2 -1,-0.3 0.859 91.9 55.2 -52.4 -36.9 7.0 -1.8 -5.5 44 87 A L H <> S+ 0 0 0 -3,-2.6 4,-2.5 -6,-0.2 -1,-0.2 0.940 103.3 54.3 -62.4 -47.4 5.1 -0.4 -2.6 45 88 A L H X S+ 0 0 20 -4,-0.8 4,-4.2 1,-0.2 5,-0.2 0.932 106.4 52.3 -51.2 -51.3 1.9 -2.0 -3.8 46 89 A E H X S+ 0 0 102 -4,-2.0 4,-3.5 1,-0.2 5,-0.3 0.938 108.3 49.8 -51.4 -53.2 3.6 -5.4 -4.0 47 90 A A H X S+ 0 0 17 -4,-2.0 4,-1.1 1,-0.2 -1,-0.2 0.911 117.2 42.7 -52.9 -44.1 4.8 -5.1 -0.4 48 91 A L H >< S+ 0 0 0 -4,-2.5 3,-0.7 2,-0.2 4,-0.4 0.974 115.3 47.0 -65.9 -57.3 1.2 -4.2 0.6 49 92 A T H >< S+ 0 0 46 -4,-4.2 3,-3.4 1,-0.3 4,-0.4 0.943 109.4 54.1 -49.8 -55.9 -0.4 -6.9 -1.6 50 93 A K H >< S+ 0 0 154 -4,-3.5 3,-0.6 1,-0.3 -1,-0.3 0.824 105.8 54.8 -48.6 -35.2 2.0 -9.6 -0.3 51 94 A H T << S+ 0 0 94 -4,-1.1 -1,-0.3 -3,-0.7 -2,-0.2 0.498 124.7 24.1 -79.2 -3.4 1.0 -8.6 3.2 52 95 A F T < S+ 0 0 79 -3,-3.4 2,-0.3 -4,-0.4 -2,-0.2 0.049 120.9 54.8-148.5 27.7 -2.7 -9.1 2.3 53 96 A Q < 0 0 103 -3,-0.6 -1,-0.2 -4,-0.4 0, 0.0 -0.842 360.0 360.0-167.1 125.6 -2.6 -11.6 -0.6 54 97 A D 0 0 209 -2,-0.3 -1,-0.1 -3,-0.1 -2,-0.0 0.978 360.0 360.0 -80.8 360.0 -1.0 -15.0 -1.1