==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 10-JUL-01 1JJZ . COMPND 2 MOLECULE: KALATA B1; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR L.SKJELDAL,L.GRAN,K.SLETTEN,B.F.VOLKMAN . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2120.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 31.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 8 A N 0 0 149 0, 0.0 19,-0.1 0, 0.0 28,-0.1 0.000 360.0 360.0 360.0 20.9 -6.8 1.5 5.3 2 9 A G + 0 0 43 1,-0.4 21,-0.0 19,-0.1 18,-0.0 -0.182 360.0 119.7 133.3 -39.8 -5.6 -2.0 5.9 3 10 A L - 0 0 109 26,-0.6 2,-2.7 1,-0.1 26,-1.9 -0.447 62.3-139.3 -62.0 113.5 -7.0 -3.8 2.9 4 11 A P S S+ 0 0 103 0, 0.0 24,-0.2 0, 0.0 -1,-0.1 -0.386 79.7 96.6 -75.1 65.0 -3.9 -5.2 1.1 5 12 A V + 0 0 107 -2,-2.7 23,-0.2 21,-0.0 -2,-0.1 0.044 35.8 117.5-138.8 21.9 -5.4 -4.4 -2.3 6 13 A a - 0 0 28 21,-0.9 22,-0.1 -3,-0.3 3,-0.1 0.898 69.0-140.9 -58.0 -42.0 -3.7 -1.1 -2.9 7 14 A G S S+ 0 0 56 20,-0.4 2,-0.3 1,-0.3 -1,-0.1 0.289 70.6 87.2 95.6 -7.7 -2.0 -2.6 -5.9 8 15 A E - 0 0 95 19,-0.1 19,-1.9 2,-0.0 -1,-0.3 -0.880 66.0-139.0-124.0 155.9 1.2 -0.8 -5.1 9 16 A T B -A 26 0A 70 -2,-0.3 17,-0.2 17,-0.3 13,-0.1 -0.494 4.0-156.1-105.5 176.6 4.2 -1.6 -2.9 10 17 A b + 0 0 3 15,-2.1 5,-0.2 -2,-0.2 16,-0.1 -0.440 31.0 150.1-154.5 68.8 6.4 0.4 -0.6 11 18 A V S S+ 0 0 104 1,-0.2 15,-0.1 3,-0.2 4,-0.1 0.710 89.1 38.5 -74.8 -21.3 9.8 -1.2 -0.2 12 19 A G S S- 0 0 78 2,-0.1 -1,-0.2 -3,-0.1 3,-0.0 0.450 126.1 -99.6-104.9 -6.3 11.2 2.3 0.4 13 20 A G S S+ 0 0 44 12,-0.1 2,-0.3 1,-0.0 3,-0.1 0.661 95.3 108.8 93.8 21.5 8.2 3.5 2.4 14 21 A T - 0 0 96 1,-0.1 -3,-0.2 2,-0.0 -5,-0.1 -0.695 41.2-178.8-131.7 79.4 6.6 5.3 -0.5 15 22 A c - 0 0 21 -2,-0.3 -6,-0.1 -5,-0.2 -1,-0.1 0.803 24.6-155.2 -45.2 -30.9 3.5 3.5 -1.6 16 23 A N + 0 0 137 1,-0.2 -1,-0.2 -3,-0.1 -6,-0.1 0.675 53.3 122.7 59.9 16.0 3.4 6.2 -4.2 17 24 A T > - 0 0 30 -8,-0.1 3,-0.8 -9,-0.1 -1,-0.2 -0.823 69.3-106.5-111.3 150.3 -0.3 5.5 -4.3 18 25 A P T 3 S- 0 0 119 0, 0.0 3,-0.1 0, 0.0 -1,-0.0 -0.488 98.0 -3.9 -75.1 141.5 -3.2 7.8 -3.6 19 26 A G T 3 S+ 0 0 71 -2,-0.2 2,-0.2 1,-0.1 0, 0.0 0.877 101.9 146.3 41.8 50.1 -5.1 7.3 -0.3 20 27 A c < - 0 0 23 -3,-0.8 9,-0.2 9,-0.1 -1,-0.1 -0.532 48.4-141.9-107.1 175.5 -2.9 4.4 0.5 21 28 A T - 0 0 61 7,-2.0 7,-0.3 -2,-0.2 8,-0.1 -0.563 17.7-143.6-141.3 72.1 -1.5 3.0 3.7 22 29 A b + 0 0 51 5,-0.3 5,-0.2 1,-0.2 -13,-0.1 -0.100 35.9 157.6 -38.8 114.6 2.0 1.8 3.2 23 30 A S - 0 0 77 3,-0.7 4,-0.2 -21,-0.0 -1,-0.2 0.454 52.1 -90.9-120.9 -12.1 2.1 -1.2 5.6 24 31 A W S S+ 0 0 137 1,-0.2 -13,-0.1 4,-0.0 -15,-0.0 0.573 103.8 31.2 62.5 137.3 4.9 -3.1 3.9 25 32 A P S S+ 0 0 75 0, 0.0 -15,-2.1 0, 0.0 2,-0.3 -0.918 136.0 10.7 -75.0 -19.7 5.7 -5.0 2.1 26 33 A V B S-A 9 0A 57 -17,-0.2 -3,-0.7 -3,-0.1 -17,-0.3 -0.846 80.2-116.3-113.8 150.3 2.7 -3.7 0.2 27 34 A a - 0 0 0 -19,-1.9 -21,-0.9 -2,-0.3 -20,-0.4 -0.295 29.5-151.4 -77.6 166.6 0.6 -0.7 0.9 28 35 A T 0 0 6 -7,-0.3 -7,-2.0 -24,-0.2 -25,-0.1 -0.799 360.0 360.0-133.4 174.6 -3.1 -1.0 1.8 29 36 A R 0 0 170 -26,-1.9 -26,-0.6 -2,-0.3 -9,-0.1 -0.786 360.0 360.0-117.7 360.0 -6.3 1.0 1.6