==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 06-SEP-06 2JM0 . COMPND 2 MOLECULE: VILLIN-1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.C.CORNILESCU,G.CORNILESCU,E.B.HADLEY,S.H.GELLMAN, . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2879.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 45.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A S > 0 0 104 0, 0.0 4,-4.6 0, 0.0 5,-0.4 0.000 360.0 360.0 360.0 68.0 2.5 -4.8 8.7 2 3 A D H > + 0 0 112 1,-0.2 4,-1.6 3,-0.2 5,-0.2 0.866 360.0 50.2 -56.1 -31.2 5.3 -2.6 7.4 3 4 A E H > S+ 0 0 170 2,-0.2 4,-1.2 3,-0.1 -1,-0.2 0.978 121.3 30.3 -71.9 -54.9 7.2 -5.8 6.8 4 5 A D H > S+ 0 0 97 2,-0.2 4,-1.6 1,-0.2 -2,-0.2 0.929 119.4 56.5 -70.6 -42.8 4.4 -7.6 4.9 5 6 A F H >X>S+ 0 0 18 -4,-4.6 4,-1.8 1,-0.2 3,-1.4 0.974 104.9 50.1 -52.6 -58.7 3.0 -4.3 3.5 6 7 A R H 3X5S+ 0 0 120 -4,-1.6 4,-2.0 -5,-0.4 5,-0.3 0.874 109.5 53.8 -50.4 -36.4 6.3 -3.3 1.8 7 8 A A H 3<5S+ 0 0 82 -4,-1.2 -1,-0.3 -5,-0.2 -2,-0.2 0.819 105.5 54.7 -69.4 -29.0 6.3 -6.8 0.3 8 9 A V H <<5S+ 0 0 34 -4,-1.6 -2,-0.2 -3,-1.4 -1,-0.2 0.955 129.3 12.3 -71.8 -49.9 2.8 -6.3 -1.2 9 10 A X H <5S- 0 0 56 -4,-1.8 -2,-0.2 2,-0.3 -3,-0.2 0.602 99.6-120.9-103.4 -12.8 3.5 -3.1 -3.1 10 11 A G S <> - 0 0 58 -2,-0.3 4,-2.7 1,-0.1 3,-0.7 -0.347 40.2-109.4 -70.9 155.3 6.9 1.6 2.5 13 14 A R H 3> S+ 0 0 124 1,-0.2 4,-2.7 2,-0.2 5,-0.2 0.838 119.4 64.3 -55.0 -28.4 3.5 2.9 3.5 14 15 A S H 34 S+ 0 0 94 2,-0.2 4,-0.3 1,-0.2 -1,-0.2 0.948 109.5 36.3 -62.8 -44.6 5.1 6.4 3.5 15 16 A A H X4 S+ 0 0 45 -3,-0.7 3,-1.8 1,-0.2 4,-0.4 0.920 115.5 54.6 -74.5 -41.8 5.8 6.1 -0.3 16 17 A F H >< S+ 0 0 3 -4,-2.7 3,-2.0 1,-0.3 -2,-0.2 0.909 98.4 63.4 -59.0 -38.6 2.5 4.2 -1.0 17 18 A A T 3< S+ 0 0 55 -4,-2.7 -1,-0.3 -5,-0.3 -2,-0.2 0.734 86.2 77.6 -58.9 -16.6 0.6 7.1 0.7 18 19 A N T < S+ 0 0 138 -3,-1.8 -1,-0.3 -4,-0.3 -2,-0.2 0.857 77.9 85.6 -63.0 -32.4 2.0 9.2 -2.1 19 20 A L S < S- 0 0 34 -3,-2.0 5,-0.1 -4,-0.4 0, 0.0 -0.355 104.7 -73.7 -68.6 151.8 -0.7 7.8 -4.5 20 21 A P > - 0 0 61 0, 0.0 4,-2.7 0, 0.0 5,-0.2 -0.072 41.5-124.3 -44.3 136.4 -4.1 9.5 -4.5 21 22 A L H > S+ 0 0 134 1,-0.2 4,-1.4 2,-0.2 5,-0.2 0.925 112.2 47.0 -54.0 -46.8 -6.1 8.7 -1.4 22 23 A W H > S+ 0 0 167 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.887 112.0 51.6 -65.1 -36.3 -9.1 7.3 -3.4 23 24 A R H > S+ 0 0 90 2,-0.2 4,-3.0 1,-0.2 5,-0.4 0.946 101.5 58.7 -67.4 -47.1 -6.7 5.2 -5.6 24 25 A Q H X S+ 0 0 16 -4,-2.7 4,-3.1 1,-0.3 5,-0.3 0.927 106.1 49.8 -50.0 -44.4 -4.9 3.6 -2.6 25 26 A Q H X S+ 0 0 101 -4,-1.4 4,-3.0 -5,-0.2 5,-0.4 0.902 110.8 51.8 -62.0 -35.3 -8.3 2.2 -1.5 26 27 A N H X S+ 0 0 72 -4,-1.3 4,-1.9 -3,-0.3 -2,-0.2 0.968 116.6 36.9 -65.3 -51.7 -8.8 1.0 -5.1 27 28 A L H < S+ 0 0 45 -4,-3.0 4,-0.4 2,-0.2 -2,-0.2 0.829 121.5 48.3 -70.7 -30.3 -5.4 -0.8 -5.2 28 29 A R H ><>S+ 0 0 67 -4,-3.1 5,-2.1 -5,-0.4 3,-0.6 0.939 113.2 44.0 -77.6 -46.5 -5.8 -1.9 -1.6 29 30 A R H ><5S+ 0 0 164 -4,-3.0 3,-1.9 -5,-0.3 -2,-0.2 0.938 111.4 54.7 -64.4 -41.7 -9.3 -3.2 -1.8 30 31 A E T 3<5S+ 0 0 156 -4,-1.9 -1,-0.3 -5,-0.4 -2,-0.2 0.748 105.7 56.0 -62.1 -19.0 -8.5 -5.0 -5.1 31 32 A R T < 5S- 0 0 155 -3,-0.6 -1,-0.3 -4,-0.4 -2,-0.2 0.551 121.9-107.4 -90.5 -6.6 -5.7 -6.6 -3.1 32 33 A G T < 5 0 0 68 -3,-1.9 -3,-0.2 -4,-0.4 -2,-0.1 0.500 360.0 360.0 94.4 2.6 -8.0 -8.0 -0.4 33 34 A L < 0 0 123 -5,-2.1 -1,-0.4 -6,-0.2 -2,-0.2 -0.742 360.0 360.0-110.0 360.0 -6.9 -5.5 2.2