==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 24-JUL-01 1JNO . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR W.A.TUCKER,S.SHAM,L.E.TOWNSLEY,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2645.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32106.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 87 0, 0.0 20,-2.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 109.7 3.7 1.8 2.3 2 2 A G E -aB 8 20A 12 5,-1.8 7,-2.4 18,-0.2 2,-0.6 -0.999 360.0 -12.2 152.5-148.0 3.0 1.8 -1.5 3 3 A A E S+aB 9 19A 32 16,-2.5 16,-2.5 -2,-0.3 2,-0.3 -0.850 109.5 33.5 -99.5 115.0 0.2 2.1 -4.2 4 4 A X E S-aB 10 18A 67 5,-2.9 7,-2.2 -2,-0.6 2,-0.4 -0.884 118.6 -12.6 146.6-111.8 -3.4 1.9 -2.8 5 5 A A E S+a 11 0A 22 12,-2.5 2,-0.3 -2,-0.3 7,-0.2 -0.985 107.2 41.9-120.5 139.1 -4.1 3.4 0.7 6 6 A X E S-a 12 0A 41 5,-1.9 7,-2.4 -2,-0.4 2,-0.5 -1.000 106.3 -12.0 137.1-132.9 -1.3 4.4 3.2 7 7 A V E S+a 13 0A 58 -2,-0.3 -5,-1.8 5,-0.2 2,-0.3 -0.935 117.3 29.9-106.8 117.1 2.0 6.3 2.5 8 8 A X E S+a 2 0A 58 5,-2.5 7,-2.4 -2,-0.5 2,-0.3 -0.844 107.3 0.8 141.4-106.5 2.9 6.5 -1.3 9 9 A W E S+a 3 0A 141 -7,-2.4 -5,-2.9 -2,-0.3 2,-0.9 -0.945 105.8 14.4-130.4 144.9 0.2 6.7 -4.0 10 10 A X E S+a 4 0A 76 5,-1.5 2,-0.3 -2,-0.3 -5,-0.2 -0.783 111.9 7.4 103.0 -86.7 -3.6 6.7 -4.3 11 11 A W E S+a 5 0A 153 -7,-2.2 -5,-1.9 -2,-0.9 2,-1.0 -0.884 107.7 25.7-131.8 158.3 -5.0 7.4 -0.7 12 12 A X E S-a 6 0A 114 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.732 112.4 -4.0 97.8 -84.1 -3.8 8.4 2.8 13 13 A W E S+a 7 0A 159 -7,-2.4 -5,-2.5 -2,-1.0 2,-0.6 -0.998 107.4 24.0-147.7 143.2 -0.5 10.3 2.3 14 14 A X E a 8 0A 104 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.889 360.0 360.0 113.3 -99.5 1.9 11.3 -0.6 15 15 A W 0 0 199 -7,-2.4 -5,-1.5 -2,-0.6 -2,-0.1 -0.758 360.0 360.0-141.3 360.0 0.4 11.4 -4.1 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 88 0, 0.0 -12,-2.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 109.7 -3.7 -1.2 2.7 18 2 B G E -Bc 4 24A 12 5,-1.8 7,-2.4 -14,-0.2 2,-0.6 -0.999 360.0 -12.2 152.5-148.0 -2.9 -2.1 -1.0 19 3 B A E S+Bc 3 25A 33 -16,-2.5 -16,-2.5 -2,-0.3 2,-0.3 -0.851 109.5 33.5 -99.4 115.0 -0.2 -3.0 -3.6 20 4 B X E S-Bc 2 26A 65 5,-2.9 7,-2.2 -2,-0.6 2,-0.4 -0.884 118.6 -12.6 146.6-111.8 3.4 -2.5 -2.3 21 5 B A E S+ c 0 27A 22 -20,-2.5 2,-0.3 -2,-0.3 7,-0.2 -0.985 107.2 42.0-120.5 139.0 4.1 -3.1 1.5 22 6 B X E S- c 0 28A 40 5,-1.9 7,-2.4 -2,-0.4 2,-0.5 -1.000 106.3 -12.0 137.1-133.0 1.3 -3.5 4.1 23 7 B V E S+ c 0 29A 55 -2,-0.3 -5,-1.8 5,-0.2 2,-0.3 -0.935 117.3 29.9-106.7 117.0 -2.1 -5.5 3.9 24 8 B X E S+cc 18 30A 58 5,-2.5 7,-2.4 -2,-0.5 2,-0.3 -0.844 107.3 0.9 141.4-106.5 -2.9 -6.6 0.3 25 9 B W E S+c 19 0A 140 -7,-2.4 -5,-2.9 -2,-0.3 2,-0.9 -0.944 105.8 14.4-130.5 144.9 -0.2 -7.5 -2.3 26 10 B X E S+c 20 0A 74 5,-1.5 2,-0.3 -2,-0.3 -5,-0.2 -0.782 111.9 7.4 103.1 -86.7 3.7 -7.5 -2.5 27 11 B W E S+c 21 0A 152 -7,-2.2 -5,-1.9 -2,-0.9 2,-1.0 -0.885 107.7 25.6-131.7 158.3 5.0 -7.4 1.1 28 12 B X E S-c 22 0A 114 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.731 112.4 -4.0 97.8 -84.1 3.8 -7.5 4.7 29 13 B W E S+c 23 0A 162 -7,-2.4 -5,-2.5 -2,-1.0 2,-0.6 -0.998 107.4 24.1-147.7 143.2 0.5 -9.5 4.6 30 14 B X E c 24 0A 105 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.890 360.0 360.0 113.3 -99.5 -1.9 -11.1 2.1 31 15 B W 0 0 202 -7,-2.4 -5,-1.5 -2,-0.6 -2,-0.1 -0.758 360.0 360.0-141.2 360.0 -0.4 -12.1 -1.3