==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 26-JUL-01 1JO3 . COMPND 2 MOLECULE: GRAMICIDIN B; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR L.E.TOWNSLEY,W.A.TUCKER,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2618.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30100.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 26.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 91 0, 0.0 20,-2.2 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 116.4 -3.0 0.8 -3.4 2 2 A G E -aB 8 20A 18 5,-2.5 7,-1.4 18,-0.2 2,-0.3 -0.644 360.0 -0.4 129.1 -74.6 -3.9 2.0 0.1 3 3 A A E S+aB 9 19A 18 16,-2.6 16,-2.6 -2,-0.3 2,-0.9 -0.994 101.6 29.3-154.0 155.4 -0.9 2.8 2.4 4 4 A X E S-aB 10 18A 78 5,-1.7 7,-2.2 -2,-0.3 2,-0.3 -0.825 117.1 -4.5 99.8 -91.2 3.0 2.8 2.5 5 5 A A E S+a 11 0A 28 12,-2.2 2,-0.3 -2,-0.9 7,-0.2 -0.992 110.8 40.9-141.1 128.4 4.1 3.5 -1.1 6 6 A X E S-a 12 0A 56 5,-2.5 7,-2.5 -2,-0.3 2,-0.5 -0.994 107.5 -17.3 140.7-134.3 1.8 3.8 -4.2 7 7 A V E S+a 13 0A 53 -2,-0.3 -5,-2.5 5,-0.2 2,-0.3 -0.952 116.6 37.3-109.6 122.6 -1.6 5.6 -4.5 8 8 A X E S-a 2 0A 54 5,-2.5 7,-2.6 -2,-0.5 2,-0.4 -0.915 108.3 -0.9 141.0-115.4 -3.3 6.2 -1.1 9 9 A W E S+a 3 0A 134 -7,-1.4 -5,-1.7 -2,-0.3 2,-0.6 -0.942 108.6 12.3-120.3 138.5 -1.2 7.2 2.1 10 10 A X E S+a 4 0A 76 5,-2.0 2,-0.3 -2,-0.4 -5,-0.2 -0.893 110.6 14.7 112.3 -99.6 2.6 7.8 2.6 11 11 A F E S+a 5 0A 127 -7,-2.2 -5,-2.5 -2,-0.6 2,-0.8 -0.845 110.3 18.0-115.5 148.6 4.7 7.9 -0.6 12 12 A X E S-a 6 0A 115 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.808 111.9 -2.9 103.6 -90.8 3.8 8.4 -4.3 13 13 A W E S+a 7 0A 161 -7,-2.5 -5,-2.5 -2,-0.8 2,-0.7 -0.973 104.4 25.3-141.7 151.7 0.2 9.8 -4.7 14 14 A X E a 8 0A 104 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.870 360.0 360.0 105.7 -99.4 -2.8 10.9 -2.5 15 15 A W 0 0 192 -7,-2.6 -5,-2.0 -2,-0.7 -7,-0.1 -0.760 360.0 360.0-141.5 360.0 -1.8 11.9 1.1 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 91 0, 0.0 -12,-2.2 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 116.4 4.2 -1.6 -1.4 18 2 B G E -Bc 4 24A 19 5,-2.5 7,-1.4 -14,-0.2 2,-0.3 -0.645 360.0 -0.3 129.2 -74.6 3.4 -1.6 2.4 19 3 B A E S+Bc 3 25A 19 -16,-2.6 -16,-2.6 -2,-0.3 2,-0.9 -0.994 101.6 29.2-154.0 155.4 -0.4 -1.9 3.2 20 4 B X E S-Bc 2 26A 78 5,-1.7 7,-2.2 -2,-0.3 2,-0.3 -0.825 117.1 -4.5 99.8 -91.2 -3.9 -2.2 1.7 21 5 B A E S+ c 0 27A 26 -20,-2.2 2,-0.3 -2,-0.9 7,-0.2 -0.992 110.8 40.9-141.1 128.4 -3.4 -3.9 -1.7 22 6 B X E S- c 0 28A 58 5,-2.5 7,-2.5 -2,-0.3 2,-0.5 -0.994 107.5 -17.3 140.7-134.2 -0.1 -5.0 -3.3 23 7 B V E S+ c 0 29A 56 -2,-0.3 -5,-2.5 5,-0.2 2,-0.3 -0.952 116.6 37.3-109.8 122.6 3.0 -6.5 -1.6 24 8 B X E S-cc 18 30A 54 5,-2.5 7,-2.6 -2,-0.5 2,-0.4 -0.916 108.3 -1.0 141.1-115.4 3.0 -6.1 2.3 25 9 B W E S+c 19 0A 132 -7,-1.4 -5,-1.7 -2,-0.3 2,-0.6 -0.941 108.6 12.3-120.4 138.4 -0.3 -6.3 4.4 26 10 B X E S+c 20 0A 75 5,-2.0 2,-0.3 -2,-0.4 -5,-0.2 -0.893 110.6 14.7 112.3 -99.6 -4.0 -6.8 3.4 27 11 B F E S+c 21 0A 131 -7,-2.2 -5,-2.5 -2,-0.6 2,-0.8 -0.845 110.3 18.0-115.6 148.5 -4.5 -8.0 -0.3 28 12 B X E S-c 22 0A 115 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.808 111.9 -2.9 103.6 -90.8 -2.1 -9.5 -3.0 29 13 B W E S+c 23 0A 160 -7,-2.5 -5,-2.5 -2,-0.8 2,-0.7 -0.973 104.3 25.2-141.8 151.7 1.1 -10.7 -1.3 30 14 B X E c 24 0A 103 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.869 360.0 360.0 105.7 -99.4 2.9 -10.9 2.1 31 15 B W 0 0 196 -7,-2.6 -5,-2.0 -2,-0.7 -7,-0.1 -0.760 360.0 360.0-141.4 360.0 0.4 -10.9 5.2