==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 26-JUL-01 1JO4 . COMPND 2 MOLECULE: GRAMICIDIN C; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR L.E.TOWNSLEY,W.A.TUCKER,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2712.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32106.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 97 0, 0.0 20,-1.8 0, 0.0 7,-0.2 0.000 360.0 360.0 360.0 111.5 3.9 -1.1 -2.2 2 2 A G E -aB 8 20A 12 5,-2.2 7,-2.3 18,-0.2 2,-0.3 -0.627 360.0 -7.7 143.2 -79.3 3.6 -1.7 1.7 3 3 A A E S+aB 9 19A 29 16,-2.6 16,-2.6 5,-0.2 2,-0.8 -0.983 101.1 36.9-152.9 160.3 0.1 -2.4 3.1 4 4 A X E S-aB 10 18A 89 5,-2.3 7,-1.7 -2,-0.3 2,-0.3 -0.873 116.3 -11.0 99.4 -95.9 -3.6 -2.6 2.2 5 5 A A E S+a 11 0A 23 12,-1.8 2,-0.4 -2,-0.8 7,-0.2 -0.999 110.0 38.0-135.8 140.9 -3.6 -3.9 -1.4 6 6 A X E S-a 12 0A 50 5,-2.1 7,-2.7 -2,-0.3 2,-0.6 -0.988 109.1 -1.4 133.4-120.3 -0.7 -4.4 -3.9 7 7 A V E S+a 13 0A 68 -2,-0.4 -5,-2.2 5,-0.2 2,-0.3 -0.926 118.3 23.4-110.0 104.2 2.9 -5.6 -3.0 8 8 A X E S+a 2 0A 51 5,-2.7 7,-2.7 -2,-0.6 2,-0.5 -0.994 105.0 3.2 142.1-139.2 3.2 -6.2 0.8 9 9 A W E S+a 3 0A 140 -7,-2.3 -5,-2.3 -2,-0.3 2,-0.4 -0.783 108.6 13.8 -98.9 122.5 0.6 -6.9 3.6 10 10 A X E S+a 4 0A 64 5,-2.2 2,-0.3 -2,-0.5 -5,-0.2 -0.778 110.2 10.4 132.7 -85.8 -3.2 -7.4 3.1 11 11 A Y E S+a 5 0A 145 -7,-1.7 -5,-2.1 -2,-0.4 2,-1.0 -0.859 105.2 21.2-127.7 159.7 -4.3 -8.1 -0.5 12 12 A X E S-a 6 0A 116 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.755 113.1 -12.2 92.4 -94.6 -2.8 -8.8 -4.0 13 13 A W E S+a 7 0A 162 -7,-2.7 -5,-2.7 -2,-1.0 2,-0.5 -0.985 106.4 40.3-142.9 149.6 0.8 -10.2 -3.4 14 14 A X E a 8 0A 114 -2,-0.3 -5,-0.2 -7,-0.2 -7,-0.1 -0.900 360.0 360.0 121.6 -99.3 3.2 -10.5 -0.4 15 15 A W 0 0 198 -7,-2.7 -5,-2.2 -2,-0.5 -7,-0.1 -0.787 360.0 360.0-142.5 360.0 1.5 -11.5 2.9 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 94 0, 0.0 -12,-1.8 0, 0.0 7,-0.2 0.000 360.0 360.0 360.0 111.5 -3.9 1.1 -2.2 18 2 B G E -Bc 4 24A 12 5,-2.2 7,-2.3 -14,-0.2 2,-0.3 -0.627 360.0 -7.7 143.3 -79.2 -3.7 1.7 1.6 19 3 B A E S+Bc 3 25A 29 -16,-2.6 -16,-2.6 5,-0.2 2,-0.8 -0.983 101.1 36.8-152.9 160.3 -0.2 2.5 3.0 20 4 B X E S-Bc 2 26A 90 5,-2.3 7,-1.7 -2,-0.3 2,-0.3 -0.873 116.3 -11.0 99.4 -95.8 3.6 2.6 2.2 21 5 B A E S+ c 0 27A 23 -20,-1.8 2,-0.4 -2,-0.8 7,-0.2 -0.999 110.0 37.9-135.8 140.9 3.6 3.9 -1.4 22 6 B X E S- c 0 28A 49 5,-2.1 7,-2.7 -2,-0.3 2,-0.6 -0.988 109.1 -1.4 133.4-120.4 0.7 4.4 -4.0 23 7 B V E S+ c 0 29A 69 -2,-0.4 -5,-2.2 5,-0.2 2,-0.3 -0.926 118.3 23.4-109.9 104.2 -2.8 5.6 -3.1 24 8 B X E S+cc 18 30A 51 5,-2.7 7,-2.7 -2,-0.6 2,-0.5 -0.994 105.0 3.3 142.1-139.1 -3.2 6.2 0.7 25 9 B W E S+c 19 0A 140 -7,-2.3 -5,-2.3 -2,-0.3 2,-0.4 -0.783 108.6 13.8 -99.0 122.5 -0.7 6.9 3.5 26 10 B X E S+c 20 0A 65 5,-2.2 2,-0.3 -2,-0.5 -5,-0.2 -0.779 110.2 10.4 132.7 -85.8 3.1 7.5 3.1 27 11 B Y E S+c 21 0A 144 -7,-1.7 -5,-2.1 -2,-0.4 2,-1.0 -0.859 105.2 21.2-127.7 159.7 4.3 8.0 -0.6 28 12 B X E S-c 22 0A 115 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.755 113.1 -12.2 92.3 -94.6 2.9 8.7 -4.1 29 13 B W E S+c 23 0A 162 -7,-2.7 -5,-2.7 -2,-1.0 2,-0.5 -0.985 106.4 40.2-142.8 149.7 -0.7 10.2 -3.5 30 14 B X E c 24 0A 115 -2,-0.3 -5,-0.2 -7,-0.2 -7,-0.1 -0.899 360.0 360.0 121.5 -99.3 -3.2 10.5 -0.6 31 15 B W 0 0 196 -7,-2.7 -5,-2.2 -2,-0.5 -7,-0.1 -0.788 360.0 360.0-142.5 360.0 -1.6 11.5 2.7