==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 11-OCT-97 1JOH . COMPND 2 MOLECULE: ANTIAMOEBIN I; . SOURCE 2 ORGANISM_SCIENTIFIC: EMERICELLOPSIS; . AUTHOR C.F.SNOOK,B.A.WALLACE . 32 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3024.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 65.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 40.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A F > 0 0 224 0, 0.0 4,-1.3 0, 0.0 3,-0.2 0.000 360.0 360.0 360.0 -57.0 1.3 -3.6 8.6 2 2 A X H > + 0 0 86 1,-0.2 4,-2.2 2,-0.2 5,-0.2 0.916 360.0 55.7 -55.6 -46.1 3.2 -1.0 10.8 3 3 A X H > S+ 0 0 75 1,-0.2 4,-2.8 2,-0.2 5,-0.3 0.880 99.1 59.9 -55.5 -41.0 4.2 0.9 7.7 4 4 A X H > S+ 0 0 77 1,-0.2 4,-1.9 -3,-0.2 -1,-0.2 0.954 109.8 42.5 -52.9 -51.2 0.7 1.2 6.5 5 5 A X H X S+ 0 0 85 -4,-1.3 4,-1.8 1,-0.2 -1,-0.2 0.915 115.5 48.7 -59.5 -50.1 -0.3 3.1 9.6 6 6 A G H X S+ 0 0 42 -4,-2.2 4,-0.5 1,-0.2 -1,-0.2 0.885 112.2 45.8 -65.3 -39.5 2.9 5.3 9.7 7 7 A L H < S+ 0 0 70 -4,-2.8 3,-0.3 1,-0.2 -1,-0.2 0.899 118.3 41.8 -76.7 -38.8 2.9 6.4 6.1 8 8 A X H >X S+ 0 0 54 -4,-1.9 3,-2.6 -5,-0.3 4,-0.7 0.770 94.5 88.8 -66.3 -35.3 -0.9 7.3 6.1 9 9 A X H >< S+ 0 0 51 -4,-1.8 3,-1.2 1,-0.3 4,-0.3 0.794 80.1 52.1 -46.8 -48.4 -0.8 8.9 9.5 10 10 A X T 3< S+ 0 0 69 -4,-0.5 -1,-0.3 -3,-0.3 3,-0.3 0.700 108.1 54.4 -65.7 -15.7 0.1 12.5 8.7 11 11 A Q T X4 S+ 0 0 67 -3,-2.6 3,-2.1 1,-0.2 -1,-0.2 0.623 81.7 92.7 -90.3 -14.2 -2.7 12.7 6.1 12 12 A X T << S+ 0 0 77 -3,-1.2 4,-0.2 -4,-0.7 -1,-0.2 0.757 77.9 58.0 -53.4 -35.7 -5.4 11.6 8.6 13 13 A X T > S+ 0 0 99 -4,-0.3 3,-1.6 -3,-0.3 -1,-0.3 0.640 77.8 96.9 -69.0 -19.5 -6.4 15.1 9.7 14 14 A X T < S+ 0 0 106 -3,-2.1 -1,-0.2 1,-0.3 -2,-0.1 0.813 84.6 43.0 -46.1 -47.1 -7.4 16.3 6.2 15 15 A P T 3 0 0 101 0, 0.0 -1,-0.3 0, 0.0 -2,-0.1 0.711 360.0 360.0 -75.1 -17.6 -11.1 15.8 6.4 16 16 A X < 0 0 218 -3,-1.6 -2,-0.2 -4,-0.2 -3,-0.1 0.572 360.0 360.0 -94.0 360.0 -11.4 17.2 9.9 17 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 18 1 B F 0 0 238 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 53.3 4.2 26.0 5.4 19 2 B X > + 0 0 93 3,-0.0 4,-1.6 0, 0.0 5,-0.1 0.233 360.0 48.5-137.1 -53.9 1.8 23.7 7.3 20 3 B X H > S+ 0 0 82 1,-0.2 4,-2.2 2,-0.2 5,-0.2 0.863 107.1 61.7 -56.6 -41.4 0.8 21.9 4.1 21 4 B X H > S+ 0 0 58 1,-0.2 4,-2.1 2,-0.2 3,-0.3 0.953 102.0 46.1 -57.4 -54.7 4.5 21.6 3.5 22 5 B X H > S+ 0 0 101 1,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.894 114.0 51.0 -51.7 -45.8 5.4 19.6 6.5 23 6 B G H X S+ 0 0 17 -4,-1.6 4,-0.5 1,-0.2 -1,-0.2 0.859 109.3 47.4 -66.6 -38.0 2.4 17.2 5.9 24 7 B L H < S+ 0 0 107 -4,-2.2 3,-0.2 -3,-0.3 -1,-0.2 0.860 116.0 44.4 -75.4 -33.7 3.2 16.4 2.3 25 8 B X H >X S+ 0 0 58 -4,-2.1 3,-2.5 -5,-0.2 4,-0.5 0.822 94.5 86.0 -68.0 -36.6 6.9 15.7 2.9 26 9 B X H >< S+ 0 0 38 -4,-1.8 3,-1.6 1,-0.3 4,-0.3 0.773 79.9 54.8 -47.6 -49.0 6.1 13.7 6.0 27 10 B X T 3< S+ 0 0 24 -4,-0.5 3,-0.4 1,-0.3 -1,-0.3 0.696 105.8 55.5 -63.2 -17.4 5.5 10.2 4.5 28 11 B Q T X4 S+ 0 0 123 -3,-2.5 3,-2.3 1,-0.2 -1,-0.3 0.613 79.4 94.7 -88.1 -9.9 8.8 10.3 2.7 29 12 B X T << S+ 0 0 79 -3,-1.6 4,-0.2 -4,-0.5 -1,-0.2 0.779 78.5 57.6 -50.8 -38.6 10.9 10.9 5.9 30 13 B X T > S+ 0 0 87 -3,-0.4 3,-2.0 -4,-0.3 -1,-0.3 0.633 76.5 99.1 -71.9 -11.6 11.6 7.2 6.5 31 14 B X T < S+ 0 0 103 -3,-2.3 -1,-0.2 1,-0.3 -2,-0.1 0.827 85.0 43.0 -47.2 -47.0 13.3 6.7 3.1 32 15 B P T 3 0 0 100 0, 0.0 -1,-0.3 0, 0.0 -2,-0.1 0.644 360.0 360.0 -76.5 -11.6 16.9 7.0 4.4 33 16 B X < 0 0 215 -3,-2.0 -2,-0.1 -4,-0.2 -3,-0.1 0.647 360.0 360.0-105.0 360.0 16.3 4.9 7.5