==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 06-MAR-07 2JOC . COMPND 2 MOLECULE: ITCHY E3 UBIQUITIN PROTEIN LIGASE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.J.MACIAS,A.Z.SHAW,P.MARTIN-MALPARTIDA,B.MORALES,L.RUIZ, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3069.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 54.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 66 0, 0.0 3,-1.1 0, 0.0 5,-0.0 0.000 360.0 360.0 360.0 -87.1 0.8 -6.3 -7.5 2 2 A A T 3 - 0 0 78 5,-0.3 0, 0.0 1,-0.2 0, 0.0 -0.090 360.0 -25.4 60.8-164.9 2.3 -9.8 -7.6 3 3 A M T 3 S+ 0 0 169 4,-0.0 -1,-0.2 3,-0.0 3,-0.1 0.303 134.8 61.4 -63.0 15.8 4.8 -10.9 -5.0 4 4 A G S < S- 0 0 11 -3,-1.1 0, 0.0 1,-0.4 0, 0.0 -0.551 100.7 -21.9-127.9-167.2 5.5 -7.2 -4.7 5 5 A P S S+ 0 0 65 0, 0.0 -1,-0.4 0, 0.0 5,-0.1 0.248 118.0 28.7 -32.5 162.1 3.8 -3.9 -3.8 6 6 A L S S+ 0 0 41 3,-0.1 3,-0.5 2,-0.1 4,-0.2 0.924 72.7 165.8 38.7 68.8 -0.0 -3.6 -4.0 7 7 A P + 0 0 39 0, 0.0 2,-1.5 0, 0.0 -5,-0.3 0.970 67.1 45.9 -72.9 -60.4 -0.6 -7.3 -3.3 8 8 A P S S- 0 0 52 0, 0.0 -2,-0.1 0, 0.0 29,-0.0 -0.314 138.3 -71.6 -81.5 53.4 -4.4 -7.3 -2.5 9 9 A G S S+ 0 0 75 -2,-1.5 2,-0.3 -3,-0.5 -3,-0.1 0.991 88.2 166.9 51.3 65.4 -5.3 -5.1 -5.5 10 10 A W - 0 0 26 -4,-0.2 2,-1.0 -5,-0.1 -1,-0.2 -0.792 46.1-127.4-116.5 151.9 -3.8 -2.1 -3.9 11 11 A E E +A 23 0A 62 12,-1.2 12,-1.9 -2,-0.3 2,-0.3 -0.812 47.8 158.8 -98.5 94.1 -2.8 1.4 -5.0 12 12 A K E -A 22 0A 13 -2,-1.0 2,-0.3 10,-0.2 10,-0.2 -0.866 16.2-178.2-118.1 150.9 0.8 1.7 -3.9 13 13 A R E -A 21 0A 136 8,-1.0 8,-1.5 -2,-0.3 2,-0.6 -0.998 20.7-143.6-149.4 147.8 3.6 3.9 -5.0 14 14 A T E -A 20 0A 90 -2,-0.3 2,-0.3 6,-0.2 6,-0.2 -0.840 22.0-179.6-118.2 94.4 7.3 4.4 -4.3 15 15 A D E >> -A 19 0A 100 4,-0.7 3,-2.8 -2,-0.6 4,-1.3 -0.660 46.2-103.7 -89.5 147.7 8.3 8.1 -4.4 16 16 A S T 34 S+ 0 0 114 1,-0.4 -1,-0.1 -2,-0.3 -2,-0.0 0.657 117.8 86.2 -47.9 -19.2 12.0 9.0 -3.7 17 17 A N T 34 S- 0 0 110 2,-0.1 -1,-0.4 1,-0.1 3,-0.1 0.841 109.5-145.3 -41.1 -17.0 10.8 10.1 -0.4 18 18 A G T <4 + 0 0 36 -3,-2.8 2,-0.3 1,-0.2 -2,-0.3 0.897 50.4 125.1 52.0 58.5 11.8 6.7 -1.3 19 19 A R E < -A 15 0A 158 -4,-1.3 2,-0.7 -6,-0.1 -4,-0.7 -0.963 61.8-117.6-138.2 151.6 9.3 4.8 0.8 20 20 A V E -A 14 0A 62 -2,-0.3 2,-0.3 12,-0.2 -6,-0.2 -0.834 36.5-178.4 -97.1 115.1 6.6 2.2 0.1 21 21 A Y E -A 13 0A 53 -8,-1.5 -8,-1.0 -2,-0.7 2,-0.5 -0.837 14.9-149.7-115.8 152.1 3.1 3.4 0.8 22 22 A F E -AB 12 31A 2 9,-1.4 9,-2.0 -2,-0.3 2,-0.7 -0.969 7.5-171.6-126.5 121.3 -0.3 1.7 0.6 23 23 A V E +AB 11 30A 37 -12,-1.9 -12,-1.2 -2,-0.5 2,-0.6 -0.881 12.9 174.1-112.7 97.8 -3.6 3.3 -0.1 24 24 A N E > - B 0 29A 30 5,-0.9 5,-1.1 -2,-0.7 2,-0.7 -0.918 12.0-164.4-103.3 122.2 -6.3 0.8 0.3 25 25 A H T 5 + 0 0 156 -2,-0.6 5,-0.0 3,-0.2 -2,-0.0 -0.689 45.2 116.6-117.0 83.8 -9.8 2.3 -0.0 26 26 A N T 5S- 0 0 103 -2,-0.7 -1,-0.1 0, 0.0 0, 0.0 0.766 104.3 -28.2 -94.2 -81.8 -12.5 0.0 1.4 27 27 A T T 5S- 0 0 102 -3,-0.1 2,-0.2 0, 0.0 -2,-0.0 0.812 126.1 -36.3 -93.6 -78.0 -13.8 2.1 4.2 28 28 A R T 5S+ 0 0 160 -3,-0.0 2,-0.4 2,-0.0 -3,-0.2 -0.657 76.5 157.4-152.4 89.6 -10.8 4.3 5.2 29 29 A I E < +B 24 0A 39 -5,-1.1 -5,-0.9 -2,-0.2 2,-0.3 -0.967 4.3 160.2-125.5 127.5 -7.4 2.6 5.1 30 30 A X E +B 23 0A 196 -2,-0.4 2,-0.3 -7,-0.2 -7,-0.2 -0.845 17.6 130.4-148.0 105.6 -4.0 4.3 4.8 31 31 A Q E -B 22 0A 57 -9,-2.0 -9,-1.4 -2,-0.3 2,-1.3 -0.990 54.0-121.8-150.3 148.6 -0.7 2.6 5.7 32 32 A W S S+ 0 0 147 -2,-0.3 2,-0.3 -11,-0.3 -12,-0.2 -0.610 75.0 93.1 -96.6 78.6 2.7 2.2 4.0 33 33 A E S S- 0 0 88 -2,-1.3 -2,-0.1 3,-0.0 -27,-0.1 -0.979 81.4 -99.6-159.6 151.6 2.9 -1.6 4.0 34 34 A D - 0 0 49 -2,-0.3 3,-0.2 1,-0.1 -12,-0.1 -0.575 32.8-149.4 -66.5 131.5 2.2 -4.7 1.8 35 35 A P + 0 0 13 0, 0.0 -1,-0.1 0, 0.0 -13,-0.0 0.365 30.4 166.0 -90.4 7.1 -1.1 -6.0 3.3 36 36 A R 0 0 164 1,-0.1 -3,-0.0 0, 0.0 0, 0.0 0.245 360.0 360.0 17.1 -99.5 -0.2 -9.7 2.5 37 37 A S 0 0 170 -3,-0.2 -1,-0.1 -29,-0.0 0, 0.0 -0.455 360.0 360.0 -62.7 360.0 -2.9 -11.4 4.6