==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 25-MAR-07 2JOT . COMPND 2 MOLECULE: HUWENTOXIN-11; . SOURCE 2 ORGANISM_SCIENTIFIC: ORNITHOCTONUS HUWENA; . AUTHOR K.PENG,S.LIANG . 55 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4103.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 50.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 18.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A I 0 0 101 0, 0.0 50,-0.0 0, 0.0 51,-0.0 0.000 360.0 360.0 360.0 91.2 4.9 12.9 3.6 2 2 A D + 0 0 106 1,-0.1 4,-0.5 2,-0.1 3,-0.4 0.388 360.0 75.6-103.0 0.1 7.9 10.7 2.8 3 3 A T S > S+ 0 0 43 1,-0.2 3,-0.6 2,-0.2 36,-0.2 0.803 86.3 60.8 -80.3 -30.8 6.2 7.4 3.5 4 4 A a T 3 S+ 0 0 6 1,-0.2 20,-1.2 47,-0.1 -1,-0.2 0.554 98.7 60.7 -72.6 -7.3 4.2 7.5 0.3 5 5 A R T 3 S+ 0 0 168 -3,-0.4 -1,-0.2 18,-0.1 -2,-0.2 0.749 78.6 102.0 -89.9 -28.0 7.5 7.4 -1.6 6 6 A L S < S- 0 0 57 -3,-0.6 2,-0.7 -4,-0.5 16,-0.2 -0.345 78.6-121.4 -59.5 131.7 8.6 4.1 -0.2 7 7 A P - 0 0 113 0, 0.0 2,-0.4 0, 0.0 -1,-0.1 -0.676 23.8-147.1 -81.4 111.4 8.2 1.3 -2.7 8 8 A S - 0 0 16 -2,-0.7 2,-0.2 14,-0.3 29,-0.2 -0.625 11.5-138.5 -80.6 131.4 5.9 -1.4 -1.2 9 9 A D - 0 0 103 27,-1.2 25,-0.2 -2,-0.4 -1,-0.0 -0.602 6.7-145.2 -89.9 150.2 6.7 -5.0 -2.4 10 10 A R - 0 0 125 -2,-0.2 23,-3.2 22,-0.1 24,-0.5 0.578 27.8-148.5 -88.4 -11.3 4.0 -7.5 -3.2 11 11 A G - 0 0 8 24,-0.5 22,-0.4 21,-0.2 24,-0.4 0.913 6.3-157.3 39.8 85.4 6.0 -10.4 -1.8 12 12 A R > + 0 0 220 21,-0.1 3,-1.2 20,-0.1 -1,-0.0 0.978 47.1 125.7 -51.2 -71.3 5.0 -13.3 -4.1 13 13 A b T 3 S- 0 0 80 1,-0.2 21,-0.1 21,-0.0 20,-0.0 0.057 91.9 -47.7 41.5-154.9 5.9 -16.1 -1.6 14 14 A K T 3 S+ 0 0 217 19,-0.1 -1,-0.2 2,-0.0 2,-0.2 0.223 119.0 86.5 -92.4 14.7 3.1 -18.6 -0.9 15 15 A A < + 0 0 38 -3,-1.2 18,-0.3 -4,-0.3 19,-0.1 -0.630 46.9 179.8-110.4 170.2 0.6 -15.7 -0.2 16 16 A S + 0 0 77 16,-0.3 2,-0.4 17,-0.2 17,-0.2 -0.296 20.7 150.3-170.1 72.9 -1.7 -13.7 -2.5 17 17 A F - 0 0 133 15,-0.4 15,-2.6 -7,-0.2 2,-0.4 -0.937 42.8-123.2-116.4 134.5 -3.8 -11.0 -0.8 18 18 A E E +A 31 0A 113 -2,-0.4 2,-0.3 13,-0.3 13,-0.2 -0.595 41.7 163.3 -77.0 127.6 -4.9 -7.8 -2.4 19 19 A R E -A 30 0A 73 11,-1.9 11,-1.3 -2,-0.4 2,-0.3 -0.833 32.8-109.6-136.9 173.9 -3.8 -4.6 -0.5 20 20 A W E +AB 29 42A 64 22,-2.5 22,-1.0 -2,-0.3 2,-0.3 -0.811 30.8 174.0-110.5 150.5 -3.5 -0.9 -1.0 21 21 A Y E -AB 28 41A 30 7,-1.0 7,-1.2 -2,-0.3 2,-0.3 -0.971 34.8 -97.1-148.9 159.9 -0.3 1.2 -1.2 22 22 A F E -A 27 0A 6 18,-1.1 2,-0.3 -2,-0.3 -14,-0.3 -0.618 26.2-167.6 -83.7 139.3 0.7 4.8 -2.0 23 23 A N E > -A 26 0A 107 3,-3.8 2,-2.3 -2,-0.3 3,-1.2 -0.654 64.7 -67.0-126.8 74.8 1.8 5.7 -5.5 24 24 A G T 3 S- 0 0 60 -20,-1.2 -20,-0.1 -2,-0.3 3,-0.1 -0.355 121.9 -15.8 79.0 -60.8 3.3 9.2 -5.4 25 25 A R T 3 S+ 0 0 191 -2,-2.3 -1,-0.3 1,-0.2 2,-0.2 0.464 129.9 56.5-143.0 -35.8 0.1 10.9 -4.5 26 26 A T E < S-A 23 0A 74 -3,-1.2 -3,-3.8 1,-0.1 -1,-0.2 -0.473 82.0-103.2-100.0 173.6 -2.7 8.4 -5.2 27 27 A c E -A 22 0A 31 -5,-0.2 2,-0.3 -2,-0.2 -5,-0.2 -0.324 32.0-165.6 -90.1 175.1 -3.4 4.9 -4.0 28 28 A A E -A 21 0A 19 -7,-1.2 -7,-1.0 -2,-0.1 2,-0.3 -0.902 9.4-136.7-151.3 176.3 -2.9 1.6 -5.8 29 29 A K E +A 20 0A 106 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.995 28.9 139.6-148.2 139.4 -3.7 -2.1 -5.6 30 30 A F E -A 19 0A 21 -11,-1.3 -11,-1.9 -2,-0.3 2,-1.2 -0.951 58.0 -75.4-162.5 176.5 -1.9 -5.4 -6.1 31 31 A I E -A 18 0A 57 -2,-0.3 2,-1.0 -13,-0.2 -13,-0.3 -0.713 46.0-173.5 -89.4 94.7 -1.4 -9.0 -4.8 32 32 A Y - 0 0 29 -15,-2.6 -15,-0.4 -2,-1.2 -16,-0.3 -0.754 12.3-173.1 -92.6 97.4 0.6 -8.5 -1.6 33 33 A G - 0 0 13 -23,-3.2 -17,-0.2 -2,-1.0 -22,-0.2 0.739 57.3 -99.3 -59.8 -21.0 1.5 -11.9 -0.3 34 34 A G S S+ 0 0 41 -24,-0.5 2,-0.7 1,-0.2 -23,-0.2 0.484 88.3 119.6 113.6 7.7 2.9 -10.1 2.7 35 35 A b + 0 0 46 -24,-0.4 -24,-0.5 -25,-0.3 -1,-0.2 -0.889 68.0 24.2-110.6 106.1 6.6 -10.1 1.8 36 36 A G S S+ 0 0 37 -2,-0.7 -27,-1.2 1,-0.2 2,-0.3 0.709 74.6 134.1 108.1 87.3 8.1 -6.7 1.5 37 37 A G + 0 0 45 -29,-0.2 -1,-0.2 -3,-0.1 -29,-0.1 -0.951 11.4 151.3-164.0 142.0 6.5 -3.8 3.3 38 38 A N S S- 0 0 108 -2,-0.3 -30,-0.1 -35,-0.1 -35,-0.0 0.415 80.4 -30.6-132.1 -84.4 7.5 -0.8 5.5 39 39 A G S S+ 0 0 21 -36,-0.2 -36,-0.1 3,-0.0 -31,-0.1 0.451 127.7 63.5-124.3 -7.2 5.4 2.4 5.5 40 40 A N S S+ 0 0 3 -19,-0.1 -18,-1.1 -33,-0.1 -32,-0.1 0.686 86.8 88.6 -89.8 -21.8 4.0 2.4 2.0 41 41 A K E +B 21 0A 22 -20,-0.2 -20,-0.2 -34,-0.1 -4,-0.1 -0.387 51.1 166.1 -76.2 155.1 2.0 -0.8 2.5 42 42 A F E -B 20 0A 56 -22,-1.0 -22,-2.5 1,-0.1 -3,-0.0 -0.898 36.6-139.1-170.1 138.4 -1.5 -0.9 3.8 43 43 A P S S+ 0 0 72 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.959 89.5 29.6 -66.0 -54.5 -4.4 -3.4 4.1 44 44 A T S >> S- 0 0 84 -25,-0.1 4,-1.0 1,-0.1 3,-0.8 -0.770 72.9-128.9-110.3 156.0 -7.3 -1.0 3.3 45 45 A Q H 3> S+ 0 0 70 -2,-0.3 4,-3.0 1,-0.2 5,-0.4 0.758 101.5 77.6 -70.5 -25.2 -7.4 2.1 1.1 46 46 A E H 3> S+ 0 0 166 1,-0.2 4,-1.2 2,-0.2 -1,-0.2 0.850 101.3 39.9 -52.7 -36.2 -9.1 4.0 4.0 47 47 A A H <> S+ 0 0 24 -3,-0.8 4,-1.1 2,-0.2 -1,-0.2 0.825 112.1 55.8 -82.1 -34.3 -5.6 4.2 5.5 48 48 A c H X S+ 0 0 1 -4,-1.0 4,-1.1 1,-0.2 5,-0.5 0.857 113.8 40.7 -65.7 -36.1 -3.9 4.9 2.2 49 49 A M H X>S+ 0 0 101 -4,-3.0 5,-1.6 3,-0.2 4,-1.0 0.816 113.9 52.3 -81.3 -33.2 -6.1 7.9 1.6 50 50 A K H <5S+ 0 0 144 -4,-1.2 -2,-0.2 -5,-0.4 -1,-0.2 0.640 112.4 47.3 -76.9 -15.2 -6.0 9.1 5.2 51 51 A R H <5S+ 0 0 111 -4,-1.1 -2,-0.2 3,-0.1 -1,-0.2 0.760 136.3 5.6 -95.5 -31.2 -2.2 9.0 5.1 52 52 A a H <5S+ 0 0 20 -4,-1.1 -3,-0.2 -5,-0.2 -2,-0.2 0.622 134.3 46.7-123.2 -30.5 -1.6 10.8 1.8 53 53 A A T <5S+ 0 0 59 -4,-1.0 -3,-0.2 -5,-0.5 -4,-0.1 0.734 126.6 29.3 -86.5 -24.7 -5.1 12.0 0.7 54 54 A K < 0 0 173 -5,-1.6 -4,-0.2 -6,-0.1 -3,-0.1 0.716 360.0 360.0-103.6 -30.6 -6.0 13.4 4.1 55 55 A A 0 0 94 -6,-0.3 -3,-0.1 -54,-0.0 -4,-0.1 -0.042 360.0 360.0 -83.2 360.0 -2.6 14.3 5.3