==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 18-APR-07 2JP3 . COMPND 2 MOLECULE: FXYD DOMAIN-CONTAINING ION TRANSPORT REGULATOR 4; . SOURCE 2 ORGANISM_SCIENTIFIC: RATTUS NORVEGICUS; . AUTHOR C.M.FRANZIN,P.TERIETE,F.M.MARASSI . 67 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6464.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 47 70.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 16 23.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A N 0 0 225 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 129.4 -20.3 -4.7 29.0 2 2 A G > + 0 0 44 2,-0.0 3,-2.6 5,-0.0 5,-0.3 -0.234 360.0 178.8-170.8 68.9 -17.1 -2.7 28.5 3 3 A P T 3 S+ 0 0 138 0, 0.0 3,-0.0 0, 0.0 -1,-0.0 0.605 82.5 72.5 -52.5 -9.5 -16.5 -1.5 24.9 4 4 A V T 3 S- 0 0 112 1,-0.1 2,-0.9 -3,-0.0 -2,-0.0 0.823 80.6-161.3 -76.9 -32.5 -13.3 0.0 26.5 5 5 A D S X S+ 0 0 74 -3,-2.6 3,-0.8 1,-0.2 6,-0.2 -0.011 72.8 95.0 75.8 -35.0 -11.7 -3.3 26.9 6 6 A K T 3 S+ 0 0 155 -2,-0.9 -1,-0.2 1,-0.2 5,-0.0 0.401 71.3 73.7 -68.1 7.1 -9.4 -1.7 29.4 7 7 A G T 3 S+ 0 0 71 -5,-0.3 -1,-0.2 3,-0.0 -5,-0.0 0.899 96.6 41.3 -86.0 -46.9 -11.9 -3.0 32.0 8 8 A S S X S- 0 0 65 -3,-0.8 3,-1.2 -6,-0.2 4,-0.1 -0.600 89.7-112.0 -99.2 162.4 -10.9 -6.7 31.9 9 9 A P G > S+ 0 0 96 0, 0.0 3,-1.7 0, 0.0 4,-0.1 0.662 105.2 86.3 -66.5 -14.7 -7.4 -8.1 31.7 10 10 A F G > + 0 0 139 1,-0.3 3,-0.8 2,-0.1 -4,-0.1 0.455 69.3 83.4 -66.3 3.5 -8.2 -9.3 28.2 11 11 A Y G X S+ 0 0 76 -3,-1.2 3,-1.4 -6,-0.2 -1,-0.3 0.839 70.8 71.4 -75.5 -34.0 -7.0 -5.8 27.2 12 12 A Y G X S+ 0 0 144 -3,-1.7 3,-1.1 1,-0.3 -1,-0.2 0.539 75.5 88.3 -60.1 -2.0 -3.4 -6.9 27.3 13 13 A D G X + 0 0 77 -3,-0.8 3,-1.0 1,-0.2 -1,-0.3 0.330 58.8 93.9 -78.8 9.4 -4.4 -8.8 24.1 14 14 A W G X> + 0 0 131 -3,-1.4 3,-3.6 1,-0.2 4,-0.5 0.753 52.7 93.2 -72.2 -24.1 -3.6 -5.6 22.2 15 15 A E H X> S+ 0 0 114 -3,-1.1 4,-1.6 1,-0.3 3,-1.3 0.738 74.0 71.7 -40.5 -23.9 -0.1 -6.9 21.6 16 16 A S H <>>S+ 0 0 61 -3,-1.0 4,-3.1 1,-0.3 5,-0.7 0.882 82.0 66.2 -62.9 -38.2 -1.7 -8.1 18.4 17 17 A L H <45S+ 0 0 113 -3,-3.6 -1,-0.3 3,-0.2 -2,-0.2 0.734 108.2 44.6 -55.8 -19.0 -1.9 -4.5 17.1 18 18 A Q H X S+ 0 0 88 -4,-2.3 4,-2.3 1,-0.3 3,-1.1 0.963 104.1 54.3 -56.4 -54.9 0.4 -3.8 0.0 30 30 A I H 3X S+ 0 0 112 -4,-2.0 4,-1.3 1,-0.3 -1,-0.3 0.808 110.7 49.6 -49.6 -28.5 -1.3 -7.0 -1.1 31 31 A A H 3X S+ 0 0 57 -4,-1.8 4,-1.7 -3,-0.4 -1,-0.3 0.792 106.9 55.1 -80.7 -29.6 -4.3 -4.8 -1.4 32 32 A G H < S+ 0 0 126 -4,-1.7 3,-0.7 1,-0.3 -1,-0.3 0.876 107.6 57.6 -55.8 -38.2 -6.1 -2.8 -7.3 36 36 A A H >< S+ 0 0 51 -4,-1.6 3,-3.7 1,-0.2 4,-0.3 0.901 93.2 66.8 -59.6 -41.9 -3.3 -2.6 -9.9 37 37 A L H >X S+ 0 0 116 -4,-2.1 3,-1.8 -3,-0.4 4,-1.2 0.865 91.4 62.2 -47.0 -40.3 -4.5 -5.9 -11.4 38 38 A S T << S+ 0 0 87 -4,-0.9 -1,-0.3 -3,-0.7 -2,-0.2 0.477 113.5 37.1 -66.7 1.5 -7.6 -4.1 -12.5 39 39 A G T <> S+ 0 0 25 -3,-3.7 4,-0.9 2,-0.1 -1,-0.3 0.225 101.7 74.1-134.3 8.5 -5.2 -2.1 -14.6 40 40 A K H <> S+ 0 0 96 -3,-1.8 4,-1.5 -4,-0.3 7,-0.2 0.841 85.6 61.8 -91.0 -40.2 -2.7 -4.8 -15.6 41 41 A C H X S+ 0 0 79 -4,-1.2 4,-0.6 1,-0.2 -1,-0.1 0.863 111.6 41.4 -53.7 -37.5 -4.9 -6.5 -18.2 42 42 A K H >>>S+ 0 0 103 1,-0.2 4,-3.3 2,-0.2 3,-0.9 0.891 110.6 54.7 -77.7 -42.1 -5.0 -3.3 -20.1 43 43 A C H 3<5S+ 0 0 55 -4,-0.9 -2,-0.2 3,-0.3 -1,-0.2 0.671 100.4 64.6 -65.6 -15.5 -1.3 -2.5 -19.6 44 44 A R H 3<5S+ 0 0 185 -4,-1.5 -1,-0.2 2,-0.1 -2,-0.2 0.839 118.8 21.5 -76.0 -33.8 -0.6 -5.9 -21.0 45 45 A R H <<5S+ 0 0 202 -3,-0.9 -2,-0.2 -4,-0.6 -1,-0.1 0.626 141.9 29.2-105.2 -21.5 -2.0 -4.9 -24.4 46 46 A N T <5S+ 0 0 95 -4,-3.3 -3,-0.3 -5,-0.1 -2,-0.1 0.795 83.7 158.9-104.3 -44.0 -1.6 -1.2 -24.0 47 47 A H < - 0 0 83 -5,-0.6 -3,-0.1 -7,-0.2 -2,-0.1 0.188 51.7 -62.7 42.8-172.6 1.4 -0.9 -21.7 48 48 A T > - 0 0 51 -5,-0.1 4,-1.1 1,-0.1 -1,-0.0 -0.757 35.6-122.2-104.5 152.8 3.4 2.3 -21.5 49 49 A P T 4 S+ 0 0 122 0, 0.0 -2,-0.1 0, 0.0 -1,-0.1 0.207 111.3 26.9 -76.9 18.6 5.4 3.9 -24.4 50 50 A S T 4 S+ 0 0 92 3,-0.0 4,-0.2 0, 0.0 -3,-0.0 0.483 112.8 56.8-143.0 -46.6 8.5 3.8 -22.3 51 51 A S T 4 S+ 0 0 70 1,-0.2 4,-0.3 2,-0.1 3,-0.2 0.805 113.4 44.1 -65.3 -30.5 8.3 1.0 -19.7 52 52 A L S >X S+ 0 0 68 -4,-1.1 3,-1.6 1,-0.2 4,-0.6 0.948 105.0 55.7 -83.3 -53.2 7.8 -1.6 -22.5 53 53 A P T 34 S+ 0 0 46 0, 0.0 -1,-0.2 0, 0.0 4,-0.2 0.452 91.5 83.9 -61.1 7.4 10.4 -0.6 -25.2 54 54 A E T 34 S+ 0 0 128 -3,-0.2 3,-0.4 2,-0.2 -2,-0.1 0.891 94.5 36.8 -76.7 -40.7 12.9 -0.9 -22.3 55 55 A K T <4 S+ 0 0 142 -3,-1.6 -1,-0.2 -4,-0.3 4,-0.1 0.568 121.8 48.1 -86.3 -9.8 13.3 -4.7 -22.7 56 56 A V S X S+ 0 0 49 -4,-0.6 4,-1.2 2,-0.1 -1,-0.2 0.315 89.0 85.8-109.0 3.8 13.0 -4.3 -26.5 57 57 A T H > S+ 0 0 57 -3,-0.4 4,-4.1 2,-0.2 -2,-0.1 0.912 85.1 53.6 -71.7 -43.7 15.5 -1.5 -26.7 58 58 A P H 4 S+ 0 0 83 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.817 115.2 41.8 -60.6 -31.2 18.6 -3.7 -26.9 59 59 A L H 4 S+ 0 0 148 -4,-0.1 -2,-0.2 1,-0.1 -3,-0.1 0.707 122.8 39.1 -88.4 -22.9 17.0 -5.6 -29.9 60 60 A I H < S+ 0 0 113 -4,-1.2 -3,-0.2 1,-0.2 -1,-0.1 0.715 129.9 18.5 -96.4 -26.5 15.8 -2.4 -31.5 61 61 A T S < S- 0 0 67 -4,-4.1 -1,-0.2 -5,-0.1 0, 0.0 -0.965 88.0 -98.2-142.2 157.5 18.8 -0.3 -30.7 62 62 A P - 0 0 109 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 0.900 38.7-162.7 -37.6 -65.2 22.5 -0.9 -29.7 63 63 A G + 0 0 66 1,-0.3 2,-0.3 -3,-0.1 -6,-0.0 0.548 44.6 127.0 86.5 8.4 21.9 -0.4 -26.0 64 64 A S - 0 0 75 2,-0.2 -1,-0.3 1,-0.1 0, 0.0 -0.780 62.5-140.7-101.5 144.3 25.6 0.1 -25.4 65 65 A A S S+ 0 0 110 -2,-0.3 2,-0.2 -3,-0.1 -1,-0.1 0.694 89.4 12.7 -73.0 -18.4 27.1 3.1 -23.6 66 66 A S 0 0 82 -3,-0.0 -2,-0.2 0, 0.0 -3,-0.0 -0.620 360.0 360.0-137.8-163.3 30.0 3.1 -26.2 67 67 A T 0 0 190 -2,-0.2 -3,-0.0 -5,-0.0 0, 0.0 -0.140 360.0 360.0 51.3 360.0 31.0 1.5 -29.5