==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 15-MAY-07 2JPL . COMPND 2 MOLECULE: BACTERIOCIN LACTOCOCCIN-G SUBUNIT ALPHA; . SOURCE 2 ORGANISM_SCIENTIFIC: LACTOCOCCUS LACTIS; . AUTHOR P.ROGNE,G.FIMLAND,J.NISSEN-MEYER,P.E.KRISTIANSEN . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4284.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 12.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 53.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 115 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-154.0 2.1 0.0 -1.2 2 2 A T > + 0 0 91 3,-0.0 4,-1.1 0, 0.0 3,-0.4 0.320 360.0 73.0-158.3 -42.1 1.1 -1.2 -4.7 3 3 A W T 4 S+ 0 0 228 1,-0.3 4,-0.1 2,-0.2 0, 0.0 0.782 106.4 45.6 -56.6 -27.1 4.0 -3.0 -6.4 4 4 A D T >4 S+ 0 0 154 1,-0.2 3,-0.8 2,-0.1 4,-0.3 0.736 107.0 57.0 -87.3 -26.2 3.3 -5.9 -3.9 5 5 A D T >> S+ 0 0 70 -3,-0.4 4,-0.8 1,-0.2 3,-0.6 0.596 79.6 92.7 -79.7 -11.4 -0.5 -5.8 -4.5 6 6 A I H 3X S+ 0 0 89 -4,-1.1 4,-0.6 1,-0.3 -1,-0.2 0.796 96.3 36.0 -51.8 -29.4 0.1 -6.3 -8.2 7 7 A G H <4 S+ 0 0 46 -3,-0.8 -1,-0.3 2,-0.1 7,-0.2 0.609 92.8 88.4 -99.2 -15.6 -0.2 -10.0 -7.5 8 8 A Q H <4 S- 0 0 145 -3,-0.6 -2,-0.2 -4,-0.3 -1,-0.1 0.801 122.7 -73.2 -52.1 -29.9 -2.9 -9.6 -4.8 9 9 A G H < + 0 0 42 -4,-0.8 3,-0.3 -3,-0.1 -2,-0.1 0.564 68.6 161.6 135.6 45.5 -5.4 -9.8 -7.7 10 10 A I S < S- 0 0 110 -4,-0.6 -3,-0.1 -5,-0.4 -4,-0.1 0.686 93.0 -17.6 -62.3 -17.0 -5.4 -6.6 -9.7 11 11 A G S S- 0 0 52 -5,-0.2 -1,-0.2 -4,-0.1 -2,-0.0 0.069 117.0 -56.6 173.4 59.4 -7.1 -8.7 -12.4 12 12 A R S > S+ 0 0 153 -3,-0.3 4,-2.3 1,-0.1 5,-0.2 0.782 81.9 150.7 63.5 26.7 -6.8 -12.4 -12.1 13 13 A V H > + 0 0 35 2,-0.2 4,-3.0 1,-0.2 5,-0.3 0.869 69.7 50.6 -56.4 -38.5 -3.0 -12.0 -12.1 14 14 A A H > S+ 0 0 70 -7,-0.2 4,-2.4 2,-0.2 5,-0.3 0.975 113.6 41.1 -64.4 -57.3 -2.8 -15.2 -10.0 15 15 A Y H > S+ 0 0 175 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.775 118.5 51.6 -62.5 -26.1 -4.9 -17.4 -12.2 16 16 A W H X S+ 0 0 172 -4,-2.3 4,-3.0 2,-0.2 5,-0.3 0.972 110.6 42.9 -74.8 -58.5 -3.2 -15.8 -15.2 17 17 A V H X S+ 0 0 79 -4,-3.0 4,-2.9 1,-0.2 5,-0.2 0.930 117.5 47.2 -53.6 -50.4 0.5 -16.3 -14.1 18 18 A G H X S+ 0 0 49 -4,-2.4 4,-1.2 -5,-0.3 -1,-0.2 0.817 114.0 48.8 -62.6 -30.8 -0.2 -19.8 -13.0 19 19 A K H < S+ 0 0 132 -4,-0.9 -2,-0.2 -5,-0.3 -1,-0.2 0.873 114.1 44.4 -76.4 -39.2 -2.1 -20.5 -16.2 20 20 A A H >< S+ 0 0 45 -4,-3.0 3,-1.5 2,-0.2 -2,-0.2 0.892 109.3 56.2 -71.9 -41.1 0.6 -19.1 -18.4 21 21 A L H 3< S+ 0 0 143 -4,-2.9 -1,-0.2 1,-0.3 -2,-0.2 0.885 119.4 32.3 -58.4 -40.3 3.4 -20.8 -16.5 22 22 A G T 3< S+ 0 0 63 -4,-1.2 -1,-0.3 -5,-0.2 -2,-0.2 0.048 97.9 122.4-105.8 25.1 1.8 -24.2 -17.1 23 23 A N < + 0 0 48 -3,-1.5 -3,-0.1 1,-0.1 -4,-0.0 0.063 29.2 169.6 -72.7-171.2 0.3 -23.3 -20.5 24 24 A L >> + 0 0 124 0, 0.0 4,-1.3 0, 0.0 3,-1.2 0.208 63.2 78.0-169.0 -42.3 0.9 -25.1 -23.8 25 25 A S H 3> S+ 0 0 71 1,-0.3 4,-1.7 2,-0.2 5,-0.2 0.788 89.4 67.0 -54.0 -27.9 -1.5 -23.9 -26.4 26 26 A D H 3> S+ 0 0 90 1,-0.2 4,-2.2 2,-0.2 -1,-0.3 0.908 99.2 48.3 -60.3 -43.7 0.8 -20.9 -26.7 27 27 A V H <> S+ 0 0 99 -3,-1.2 4,-1.7 1,-0.2 -1,-0.2 0.836 104.8 61.2 -66.3 -33.2 3.6 -23.0 -28.1 28 28 A N H X S+ 0 0 112 -4,-1.3 4,-0.7 2,-0.2 -1,-0.2 0.929 109.7 39.6 -59.4 -47.6 1.2 -24.6 -30.6 29 29 A Q H >X S+ 0 0 114 -4,-1.7 4,-1.7 1,-0.2 3,-0.9 0.917 115.9 50.4 -68.9 -44.7 0.4 -21.3 -32.3 30 30 A A H 3X S+ 0 0 49 -4,-2.2 4,-1.2 1,-0.3 -1,-0.2 0.745 103.3 62.7 -65.2 -23.2 4.1 -20.1 -32.1 31 31 A S H 3X S+ 0 0 73 -4,-1.7 4,-1.3 2,-0.2 -1,-0.3 0.786 104.7 46.3 -72.4 -28.0 5.1 -23.4 -33.6 32 32 A R H