==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN TRANSPORT 02-JUN-07 2JQK . COMPND 2 MOLECULE: VACUOLAR PROTEIN SORTING-ASSOCIATING PROTEIN 4B; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.D.STUCHELL-BRERETON,J.J.SKALICKY,C.KIEFFER,S.GHAFFARIAN, . 86 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6352.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 70 81.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 64 74.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 10 A N > 0 0 78 0, 0.0 4,-1.2 0, 0.0 3,-0.2 0.000 360.0 360.0 360.0 -40.9 -11.1 -8.0 2.7 2 11 A L H >> + 0 0 107 1,-0.2 4,-1.6 2,-0.2 3,-0.8 0.940 360.0 54.5 -61.2 -49.6 -10.3 -7.9 -1.0 3 12 A Q H 3> S+ 0 0 134 1,-0.3 4,-2.2 2,-0.2 -1,-0.2 0.806 106.6 54.1 -55.0 -30.6 -12.9 -5.3 -1.7 4 13 A K H 3> S+ 0 0 97 -3,-0.2 4,-2.5 2,-0.2 5,-0.3 0.821 101.5 58.8 -73.7 -32.3 -11.2 -3.2 1.0 5 14 A A H X S+ 0 0 0 -4,-1.3 4,-1.3 15,-0.2 3,-0.6 0.961 112.4 39.7 -62.6 -53.8 -5.5 6.6 -1.9 13 22 A A H 3X S+ 0 0 33 -4,-1.7 4,-1.6 1,-0.2 5,-0.3 0.848 109.4 62.3 -65.0 -34.8 -4.3 7.1 -5.4 14 23 A Q H 3X S+ 0 0 117 -4,-2.2 4,-1.3 1,-0.2 -1,-0.2 0.823 105.8 46.6 -60.4 -31.7 -7.3 9.3 -6.2 15 24 A E H S+ 0 0 12 -4,-1.2 4,-2.6 -3,-0.6 5,-0.6 0.806 103.3 62.8 -80.1 -31.5 -6.1 11.7 -3.6 16 25 A D H <5S+ 0 0 27 -4,-1.3 -2,-0.2 1,-0.2 -1,-0.2 0.898 112.6 35.7 -60.1 -42.0 -2.5 11.7 -4.9 17 26 A K H <5S+ 0 0 179 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.812 114.9 56.8 -81.0 -32.5 -3.7 13.1 -8.2 18 27 A A H <5S- 0 0 75 -4,-1.3 -2,-0.2 -5,-0.3 -1,-0.2 0.860 120.7-104.3 -66.9 -36.4 -6.3 15.3 -6.6 19 28 A G T <5S+ 0 0 32 -4,-2.6 -3,-0.1 1,-0.4 -4,-0.1 0.030 78.5 125.7 135.5 -27.7 -3.8 17.0 -4.4 20 29 A N < + 0 0 67 -5,-0.6 -1,-0.4 -6,-0.1 -2,-0.1 -0.172 20.4 162.3 -59.8 155.1 -4.4 15.4 -1.0 21 30 A Y > + 0 0 79 3,-0.1 4,-2.8 45,-0.0 5,-0.2 0.483 66.8 56.1-140.8 -47.1 -1.5 13.8 0.8 22 31 A E H > S+ 0 0 123 2,-0.2 4,-1.6 1,-0.2 5,-0.1 0.949 117.6 36.7 -59.3 -52.0 -2.3 13.3 4.5 23 32 A E H > S+ 0 0 73 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.827 118.2 52.6 -70.6 -32.2 -5.5 11.3 3.8 24 33 A A H > S+ 0 0 0 2,-0.2 4,-2.0 1,-0.2 -2,-0.2 0.838 105.9 54.3 -71.9 -34.1 -3.8 9.6 0.8 25 34 A L H X S+ 0 0 15 -4,-2.8 4,-1.8 2,-0.2 5,-0.2 0.930 110.4 44.7 -65.7 -46.7 -0.8 8.6 2.9 26 35 A Q H X S+ 0 0 93 -4,-1.6 4,-2.0 1,-0.2 -2,-0.2 0.887 115.2 48.3 -65.0 -40.0 -3.0 6.8 5.6 27 36 A L H X S+ 0 0 35 -4,-1.7 4,-3.3 2,-0.2 5,-0.2 0.837 106.5 58.8 -69.3 -33.4 -5.1 5.2 2.9 28 37 A Y H X S+ 0 0 2 -4,-2.0 4,-2.6 2,-0.2 5,-0.2 0.959 110.5 39.6 -60.4 -53.9 -2.0 4.0 1.0 29 38 A Q H X S+ 0 0 30 -4,-1.8 4,-2.0 2,-0.2 -2,-0.2 0.915 118.7 48.5 -62.8 -44.3 -0.6 2.0 3.9 30 39 A H H X S+ 0 0 88 -4,-2.0 4,-1.4 2,-0.2 -2,-0.2 0.934 112.9 47.5 -61.9 -47.9 -4.1 0.7 4.9 31 40 A A H X S+ 0 0 0 -4,-3.3 4,-1.4 -23,-0.3 3,-0.5 0.938 113.8 46.6 -59.4 -49.4 -4.9 -0.3 1.3 32 41 A V H X S+ 0 0 0 -4,-2.6 4,-2.1 -5,-0.2 5,-0.3 0.833 105.2 62.6 -62.7 -33.0 -1.5 -2.0 0.8 33 42 A Q H X S+ 0 0 100 -4,-2.0 4,-1.6 1,-0.2 -1,-0.2 0.880 104.1 47.1 -60.1 -39.3 -2.0 -3.7 4.2 34 43 A Y H X S+ 0 0 74 -4,-1.4 4,-2.2 -3,-0.5 5,-0.2 0.840 107.4 58.1 -71.4 -33.9 -5.1 -5.5 2.9 35 44 A F H X S+ 0 0 17 -4,-1.4 4,-1.5 1,-0.2 -2,-0.2 0.955 113.5 36.2 -60.6 -53.0 -3.3 -6.5 -0.3 36 45 A L H X S+ 0 0 11 -4,-2.1 4,-2.2 1,-0.2 -1,-0.2 0.806 111.8 63.7 -70.7 -30.0 -0.6 -8.4 1.5 37 46 A H H X S+ 0 0 85 -4,-1.6 4,-1.3 -5,-0.3 -2,-0.2 0.948 106.7 40.8 -58.9 -51.7 -3.1 -9.6 4.1 38 47 A V H < S+ 0 0 21 -4,-2.2 -1,-0.2 1,-0.2 -2,-0.2 0.864 113.5 55.0 -65.6 -36.9 -5.1 -11.6 1.6 39 48 A V H >< S+ 0 0 20 -4,-1.5 3,-0.8 -5,-0.2 -1,-0.2 0.856 106.2 51.5 -64.8 -35.9 -1.9 -12.8 -0.1 40 49 A K H 3< S+ 0 0 121 -4,-2.2 -1,-0.2 1,-0.2 -2,-0.2 0.819 124.0 29.0 -70.3 -31.5 -0.6 -14.2 3.2 41 50 A Y T 3< S+ 0 0 167 -4,-1.3 -1,-0.2 1,-0.2 -2,-0.2 -0.064 130.2 38.8-118.2 29.3 -3.9 -16.0 3.8 42 51 A E < + 0 0 150 -3,-0.8 2,-0.7 -5,-0.1 -1,-0.2 -0.262 60.9 163.7-177.8 80.0 -4.8 -16.6 0.2 43 52 A A + 0 0 64 -3,-0.2 3,-0.1 1,-0.2 -4,-0.1 -0.881 4.4 159.9-111.8 102.6 -2.1 -17.5 -2.4 44 53 A Q - 0 0 194 -2,-0.7 2,-0.2 1,-0.2 -1,-0.2 0.960 63.6 -25.3 -82.6 -63.1 -3.5 -18.9 -5.6 45 54 A G > - 0 0 37 1,-0.0 4,-0.9 0, 0.0 -1,-0.2 -0.642 62.3 -96.1-137.2-165.9 -0.6 -18.3 -8.1 46 55 A D H > S+ 0 0 98 -2,-0.2 4,-2.9 2,-0.2 5,-0.2 0.783 114.1 62.7 -88.9 -31.6 2.4 -16.2 -8.8 47 56 A K H > S+ 0 0 192 2,-0.2 4,-1.4 1,-0.2 -1,-0.1 0.889 106.3 46.0 -60.3 -41.1 0.6 -13.8 -11.2 48 57 A A H > S+ 0 0 55 2,-0.2 4,-2.1 1,-0.2 5,-0.2 0.933 116.9 42.4 -67.9 -48.0 -1.7 -12.7 -8.4 49 58 A K H X S+ 0 0 50 -4,-0.9 4,-2.1 1,-0.2 -2,-0.2 0.827 112.0 56.0 -68.2 -32.2 1.1 -12.2 -5.9 50 59 A Q H X S+ 0 0 105 -4,-2.9 4,-1.7 2,-0.2 -1,-0.2 0.824 109.4 47.0 -69.3 -32.1 3.3 -10.6 -8.6 51 60 A S H X S+ 0 0 67 -4,-1.4 4,-2.1 -5,-0.2 -2,-0.2 0.962 114.8 42.5 -73.8 -55.0 0.6 -8.0 -9.2 52 61 A I H X S+ 0 0 18 -4,-2.1 4,-2.3 1,-0.2 -2,-0.2 0.877 114.8 53.3 -59.4 -39.4 -0.2 -7.1 -5.6 53 62 A R H X S+ 0 0 48 -4,-2.1 4,-1.6 -5,-0.2 -1,-0.2 0.961 110.2 44.8 -61.1 -54.0 3.5 -7.1 -4.8 54 63 A A H X S+ 0 0 62 -4,-1.7 4,-1.6 1,-0.2 -1,-0.2 0.849 116.8 47.7 -59.4 -34.9 4.4 -4.7 -7.6 55 64 A K H X S+ 0 0 78 -4,-2.1 4,-2.2 1,-0.2 5,-0.2 0.808 106.0 57.9 -76.0 -30.9 1.5 -2.5 -6.7 56 65 A C H X S+ 0 0 0 -4,-2.3 4,-1.8 -5,-0.2 -2,-0.2 0.823 107.6 48.0 -68.2 -31.7 2.4 -2.6 -3.0 57 66 A T H X S+ 0 0 52 -4,-1.6 4,-2.7 2,-0.2 -2,-0.2 0.923 111.4 48.0 -74.5 -46.7 5.8 -1.1 -3.8 58 67 A E H X S+ 0 0 123 -4,-1.6 4,-1.6 2,-0.2 -2,-0.2 0.927 118.1 41.2 -59.9 -47.2 4.5 1.7 -6.0 59 68 A Y H X S+ 0 0 45 -4,-2.2 4,-1.8 1,-0.2 -1,-0.2 0.899 115.4 50.7 -68.2 -41.9 1.9 2.7 -3.4 60 69 A L H X S+ 0 0 0 -4,-1.8 4,-2.2 -5,-0.2 5,-0.2 0.871 106.3 56.4 -63.9 -37.7 4.3 2.2 -0.5 61 70 A D H X S+ 0 0 79 -4,-2.7 4,-2.1 1,-0.2 -1,-0.2 0.924 107.0 48.0 -60.3 -46.5 6.9 4.4 -2.3 62 71 A R H X S+ 0 0 100 -4,-1.6 4,-3.3 1,-0.2 5,-0.3 0.889 109.4 54.2 -62.1 -40.3 4.4 7.3 -2.6 63 72 A A H X S+ 0 0 0 -4,-1.8 4,-2.2 1,-0.2 -1,-0.2 0.929 111.9 42.8 -60.0 -47.6 3.5 7.0 1.1 64 73 A E H X S+ 0 0 91 -4,-2.2 4,-1.3 2,-0.2 -1,-0.2 0.825 116.3 50.2 -68.6 -32.0 7.1 7.2 2.2 65 74 A K H X S+ 0 0 158 -4,-2.1 4,-3.1 -5,-0.2 5,-0.3 0.936 112.2 44.7 -71.7 -48.4 7.7 10.0 -0.2 66 75 A L H X S+ 0 0 17 -4,-3.3 4,-2.8 1,-0.2 5,-0.2 0.905 111.3 54.0 -62.5 -43.0 4.7 12.1 0.8 67 76 A K H X S+ 0 0 102 -4,-2.2 4,-1.2 -5,-0.3 -1,-0.2 0.860 114.6 41.9 -60.0 -36.5 5.5 11.6 4.5 68 77 A E H X S+ 0 0 117 -4,-1.3 4,-3.6 2,-0.2 3,-0.3 0.960 117.5 43.4 -75.1 -54.7 9.0 12.9 3.9 69 78 A Y H < S+ 0 0 148 -4,-3.1 -2,-0.2 1,-0.2 -3,-0.2 0.825 113.0 55.8 -60.3 -31.9 8.2 15.8 1.6 70 79 A L H < S+ 0 0 78 -4,-2.8 -1,-0.2 -5,-0.3 -2,-0.2 0.880 116.9 33.9 -68.5 -39.0 5.3 16.6 4.0 71 80 A K H < 0 0 169 -4,-1.2 -2,-0.2 -3,-0.3 -1,-0.2 0.795 360.0 360.0 -85.5 -31.8 7.6 16.8 7.0 72 81 A N < 0 0 168 -4,-3.6 -3,-0.2 -5,-0.1 -2,-0.2 0.952 360.0 360.0 -85.2 360.0 10.5 18.3 5.0 73 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 74 116 B D > 0 0 99 0, 0.0 4,-1.8 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -32.0 7.8 -10.3 -0.8 75 117 B E H > + 0 0 120 2,-0.2 4,-1.2 3,-0.2 5,-0.1 0.840 360.0 40.4 -74.0 -34.8 10.4 -9.8 1.9 76 118 B E H > S+ 0 0 113 2,-0.2 4,-1.8 3,-0.1 -1,-0.1 0.930 118.8 43.9 -79.1 -49.3 11.0 -6.2 0.8 77 119 B I H > S+ 0 0 14 2,-0.2 4,-1.6 1,-0.2 -2,-0.2 0.922 115.6 48.8 -61.8 -46.0 7.4 -5.2 0.2 78 120 B E H X S+ 0 0 77 -4,-1.8 4,-1.7 1,-0.2 -1,-0.2 0.908 111.6 49.2 -60.6 -44.3 6.2 -6.9 3.4 79 121 B R H X S+ 0 0 155 -4,-1.2 4,-1.8 1,-0.2 -1,-0.2 0.824 104.1 61.8 -65.2 -31.7 9.0 -5.2 5.4 80 122 B Q H X S+ 0 0 44 -4,-1.8 4,-2.7 2,-0.2 5,-0.3 0.928 103.9 47.3 -60.3 -47.2 8.0 -1.9 3.8 81 123 B L H X S+ 0 0 10 -4,-1.6 4,-3.4 1,-0.2 -1,-0.2 0.933 111.3 50.3 -60.5 -48.1 4.5 -2.0 5.3 82 124 B K H < S+ 0 0 104 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.824 112.4 49.8 -60.1 -32.0 5.8 -2.9 8.7 83 125 B A H < S+ 0 0 60 -4,-1.8 3,-0.2 -5,-0.2 -2,-0.2 0.951 116.1 38.4 -72.2 -51.7 8.3 -0.0 8.5 84 126 B L H < S+ 0 0 34 -4,-2.7 2,-1.2 1,-0.2 -2,-0.2 0.913 115.9 55.6 -66.0 -43.9 5.7 2.6 7.5 85 127 B G S < S+ 0 0 36 -4,-3.4 2,-0.3 -5,-0.3 -1,-0.2 -0.677 83.0 110.1 -95.0 84.4 3.0 1.2 9.8 86 128 B V 0 0 89 -2,-1.2 -3,-0.0 -3,-0.2 -4,-0.0 -0.946 360.0 360.0-157.9 133.3 4.7 1.2 13.2 87 129 B D 0 0 231 -2,-0.3 -1,-0.1 0, 0.0 -2,-0.0 0.517 360.0 360.0-141.6 360.0 4.3 3.2 16.4