==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 16-JUL-07 2JSV . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. 'GROUP G'; . AUTHOR W.FRANKS,B.J.WYLIE,H.L.FRERICKS,A.J.NIEUWKOOP,R.MAYRHOFER, . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3966.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 64.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 X M 0 0 94 0, 0.0 19,-1.0 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 -12.0 13.9 5.2 15.6 2 2 X Q E -A 19 0A 99 17,-0.2 2,-0.3 19,-0.1 17,-0.2 -0.727 360.0-168.6 -91.8 137.0 13.2 2.8 12.8 3 3 X Y E -A 18 0A 4 15,-1.6 15,-1.8 -2,-0.4 2,-0.4 -0.915 9.6-144.7-124.9 151.4 15.3 2.8 9.7 4 4 X K E -A 17 0A 72 -2,-0.3 48,-0.7 13,-0.2 2,-0.5 -0.922 5.3-149.4-118.2 142.2 14.9 1.2 6.3 5 5 X L E -Ab 16 52A 2 11,-1.5 11,-3.6 -2,-0.4 2,-0.4 -0.941 13.4-172.0-113.7 121.7 17.6 -0.3 4.0 6 6 X I E -Ab 15 53A 43 -2,-0.5 48,-2.4 46,-0.5 2,-0.5 -0.939 6.1-158.9-115.5 132.2 17.1 -0.2 0.3 7 7 X L E +Ab 14 54A 2 7,-5.3 7,-2.7 -2,-0.4 2,-0.2 -0.934 21.5 157.1-113.7 127.7 19.4 -2.0 -2.2 8 8 X N + 0 0 58 46,-1.3 2,-0.3 -2,-0.5 3,-0.1 -0.529 8.6 116.9-128.2-164.7 19.6 -0.9 -5.8 9 9 X G S S- 0 0 30 -2,-0.2 32,-0.1 1,-0.2 30,-0.0 -0.881 74.5 -54.2 133.8-165.8 22.0 -1.2 -8.8 10 10 X K S S- 0 0 169 -2,-0.3 -1,-0.2 1,-0.1 3,-0.0 0.978 129.6 -6.1 -74.0 -61.1 22.2 -2.8 -12.2 11 11 X T S S+ 0 0 144 -3,-0.1 2,-0.5 1,-0.1 -1,-0.1 0.100 120.4 87.9-122.1 18.4 21.4 -6.4 -11.3 12 12 X L + 0 0 70 44,-0.1 2,-0.4 2,-0.0 44,-0.2 -0.907 47.0 154.6-125.4 105.8 21.4 -6.0 -7.5 13 13 X K + 0 0 173 -2,-0.5 2,-0.3 -3,-0.0 -5,-0.3 -0.989 5.9 150.2-131.9 139.3 18.2 -5.0 -5.8 14 14 X G E -A 7 0A 21 -7,-2.7 -7,-5.3 -2,-0.4 2,-0.4 -0.979 26.3-149.0-163.1 152.6 17.0 -5.6 -2.3 15 15 X E E -A 6 0A 152 -2,-0.3 2,-0.3 -9,-0.3 -9,-0.2 -0.982 18.8-179.3-129.3 138.4 14.8 -4.1 0.4 16 16 X T E -A 5 0A 25 -11,-3.6 -11,-1.5 -2,-0.4 2,-0.4 -0.926 14.2-158.9-136.0 162.1 15.3 -4.4 4.2 17 17 X T E +A 4 0A 117 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.989 17.5 166.4-143.1 129.5 13.7 -3.3 7.4 18 18 X T E -A 3 0A 61 -15,-1.8 -15,-1.6 -2,-0.4 2,-0.4 -0.990 20.5-147.9-144.3 151.9 15.3 -3.0 10.9 19 19 X E E +A 2 0A 146 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.971 27.0 151.8-124.2 135.5 14.4 -1.5 14.2 20 20 X A - 0 0 22 -19,-1.0 3,-0.1 -2,-0.4 -2,-0.0 -0.902 55.4-102.0-148.9 176.9 16.9 -0.0 16.8 21 21 X V S S- 0 0 121 -2,-0.3 2,-0.3 1,-0.2 -1,-0.1 0.876 101.7 -12.4 -71.4 -38.5 17.3 2.5 19.6 22 22 X D > - 0 0 59 1,-0.1 4,-1.8 -3,-0.0 3,-0.4 -0.953 66.9-105.6-154.9 170.0 19.1 4.8 17.2 23 23 X A H > S+ 0 0 13 -2,-0.3 4,-5.2 1,-0.2 5,-0.2 0.803 112.7 69.6 -72.2 -29.1 20.8 5.0 13.8 24 24 X A H > S+ 0 0 58 1,-0.2 4,-1.0 2,-0.2 -1,-0.2 0.892 107.4 39.0 -55.7 -37.9 24.2 5.0 15.5 25 25 X T H > S+ 0 0 62 -3,-0.4 4,-1.4 2,-0.2 -1,-0.2 0.912 120.0 44.8 -76.6 -44.9 23.5 1.4 16.4 26 26 X A H X S+ 0 0 2 -4,-1.8 4,-4.1 1,-0.2 5,-0.2 0.852 104.7 65.6 -66.2 -36.5 21.8 0.6 13.1 27 27 X E H X S+ 0 0 54 -4,-5.2 4,-2.1 2,-0.2 -1,-0.2 0.894 102.0 46.6 -53.9 -45.7 24.5 2.4 11.2 28 28 X K H X S+ 0 0 140 -4,-1.0 4,-0.8 -5,-0.2 -1,-0.2 0.942 119.6 39.0 -64.6 -47.1 27.2 -0.1 12.2 29 29 X V H X S+ 0 0 71 -4,-1.4 4,-1.1 1,-0.2 3,-0.4 0.860 112.0 59.0 -70.3 -36.2 25.0 -3.1 11.4 30 30 X F H >X S+ 0 0 1 -4,-4.1 4,-1.2 1,-0.3 3,-1.0 0.920 100.4 55.1 -59.0 -45.0 23.6 -1.4 8.3 31 31 X K H 3X S+ 0 0 83 -4,-2.1 4,-2.1 1,-0.3 -1,-0.3 0.825 102.6 58.8 -58.3 -30.0 27.1 -1.1 6.9 32 32 X Q H 3X S+ 0 0 109 -4,-0.8 4,-4.9 -3,-0.4 5,-0.3 0.826 95.4 63.6 -68.1 -31.2 27.3 -4.8 7.3 33 33 X Y H S+ 0 0 5 -4,-1.2 5,-3.1 2,-0.2 -1,-0.2 0.926 120.1 44.4 -67.5 -44.5 26.2 -3.8 2.2 35 35 X N H ><5S+ 0 0 130 -4,-2.1 3,-1.2 3,-0.2 -2,-0.2 0.905 113.4 50.3 -65.9 -41.6 29.4 -5.7 3.1 36 36 X D H 3<5S+ 0 0 105 -4,-4.9 -1,-0.2 1,-0.3 -2,-0.2 0.829 118.3 40.8 -65.1 -30.6 27.4 -8.9 3.8 37 37 X N T 3<5S- 0 0 75 -4,-1.7 -1,-0.3 -5,-0.3 -2,-0.2 -0.422 107.3-124.7-113.6 53.1 25.8 -8.3 0.3 38 38 X G T < 5 + 0 0 74 -3,-1.2 2,-0.5 1,-0.1 -3,-0.2 0.558 51.3 169.1 3.1 59.3 29.0 -7.2 -1.4 39 39 X V < - 0 0 18 -5,-3.1 2,-0.5 -6,-0.1 -1,-0.1 -0.804 20.4-171.7 -97.4 132.5 27.2 -4.1 -2.5 40 40 X D + 0 0 124 -2,-0.5 2,-0.2 -3,-0.1 14,-0.0 -0.926 37.5 95.7-126.1 107.0 29.2 -1.2 -4.0 41 41 X G S S- 0 0 45 -2,-0.5 2,-0.4 15,-0.1 15,-0.3 -0.735 72.8 -50.1-157.4-152.8 27.3 2.1 -4.5 42 42 X E E -C 55 0A 148 13,-5.0 13,-2.8 -2,-0.2 2,-0.4 -0.805 45.7-147.5-102.8 142.5 26.6 5.5 -3.1 43 43 X W E -C 54 0A 81 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.884 11.4-168.3-112.9 142.6 25.4 5.9 0.5 44 44 X T E -C 53 0A 58 9,-1.6 9,-0.9 -2,-0.4 2,-0.4 -0.945 4.9-163.7-128.4 149.6 23.1 8.5 1.8 45 45 X Y E -C 52 0A 123 -2,-0.3 2,-0.5 7,-0.1 7,-0.1 -0.974 4.0-172.9-137.5 122.1 22.1 9.6 5.4 46 46 X D E >> -C 51 0A 73 5,-1.0 5,-0.6 -2,-0.4 4,-0.5 -0.955 14.2-165.3-117.7 128.3 19.1 11.7 6.4 47 47 X D T 45S+ 0 0 129 -2,-0.5 -1,-0.1 2,-0.2 0, 0.0 0.819 95.7 48.9 -77.1 -32.0 18.6 12.9 9.9 48 48 X A T 45S+ 0 0 91 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.824 124.4 30.6 -75.9 -32.3 14.9 13.8 9.2 49 49 X T T 45S- 0 0 77 2,-0.1 -2,-0.2 -46,-0.0 -1,-0.2 0.411 88.5-155.1-103.7 -2.1 14.3 10.4 7.6 50 50 X K T <5 + 0 0 66 -4,-0.5 2,-0.4 1,-0.1 -3,-0.2 0.788 50.2 134.4 26.9 46.3 16.8 8.7 9.8 51 51 X T E < - C 0 46A 32 -5,-0.6 -5,-1.0 -48,-0.2 2,-0.4 -0.952 47.2-150.1-124.9 143.8 17.0 6.1 7.0 52 52 X F E +bC 5 45A 5 -48,-0.7 -46,-0.5 -2,-0.4 2,-0.3 -0.939 21.4 166.9-115.9 132.7 20.0 4.5 5.3 53 53 X T E -bC 6 44A 28 -9,-0.9 -9,-1.6 -2,-0.4 2,-0.5 -0.976 23.1-145.6-141.4 154.5 20.0 3.4 1.7 54 54 X V E -bC 7 43A 2 -48,-2.4 -46,-1.3 -2,-0.3 2,-0.4 -0.981 15.8-178.5-126.3 124.9 22.6 2.3 -0.8 55 55 X T E C 0 42A 56 -13,-2.8 -13,-5.0 -2,-0.5 -46,-0.1 -0.981 360.0 360.0-125.6 129.6 22.4 3.1 -4.6 56 56 X E 0 0 80 -2,-0.4 -15,-0.1 -15,-0.3 -44,-0.1 -0.847 360.0 360.0 -97.4 360.0 24.9 1.9 -7.2