==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 25-JUL-07 2JTB . COMPND 2 MOLECULE: HAINANTOXIN-3; . SOURCE 2 ORGANISM_SCIENTIFIC: ORNITHOCTONUS HAINANA; . AUTHOR Q.ZHU,Z.LIU,S.LIANG . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2741.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 42.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 15.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 137 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-139.5 7.9 10.6 4.2 2 2 A a - 0 0 66 1,-0.1 14,-0.2 14,-0.0 13,-0.1 -0.307 360.0-103.7 -89.6 178.8 6.2 7.7 2.4 3 3 A K B -a 16 0A 76 12,-0.9 14,-0.7 1,-0.1 -1,-0.1 -0.190 25.8-159.0 -91.4-171.3 4.9 4.4 4.0 4 4 A G - 0 0 22 12,-0.1 2,-0.4 1,-0.1 -1,-0.1 0.174 51.0 -23.3-133.8-104.7 6.5 0.9 3.8 5 5 A F S S+ 0 0 130 1,-0.1 25,-0.2 15,-0.1 3,-0.1 -0.959 122.1 10.2-123.8 139.5 4.7 -2.5 4.3 6 6 A G S S+ 0 0 54 23,-3.1 2,-0.2 -2,-0.4 -1,-0.1 0.704 92.8 140.1 71.6 16.7 1.5 -3.2 6.3 7 7 A D - 0 0 56 -3,-0.1 22,-1.7 22,-0.1 2,-1.5 -0.593 65.6-104.8 -91.1 155.5 0.9 0.6 6.5 8 8 A S B +B 28 0B 88 20,-0.2 2,-0.3 -2,-0.2 20,-0.3 -0.591 56.4 163.0 -80.5 91.1 -2.6 2.2 6.2 9 9 A b - 0 0 0 -2,-1.5 14,-0.1 18,-0.7 5,-0.0 -0.831 36.2-124.9-110.8 149.5 -2.3 3.6 2.6 10 10 A T >>> - 0 0 28 -2,-0.3 3,-1.1 12,-0.1 5,-0.7 -0.805 24.3-124.0 -95.9 129.2 -5.2 4.7 0.4 11 11 A P T 345S+ 0 0 55 0, 0.0 12,-0.0 0, 0.0 10,-0.0 -0.505 98.0 22.5 -70.7 128.4 -5.5 3.2 -3.1 12 12 A G T 345S+ 0 0 73 -2,-0.3 -2,-0.0 10,-0.0 0, 0.0 0.037 112.1 73.6 102.6 -26.4 -5.5 5.9 -5.8 13 13 A K T <45S- 0 0 150 -3,-1.1 -3,-0.0 0, 0.0 0, 0.0 0.553 93.6-135.4 -95.1 -8.5 -3.8 8.5 -3.5 14 14 A N T <5 + 0 0 139 -4,-0.6 7,-0.0 1,-0.1 -5,-0.0 0.969 44.2 158.9 53.9 57.3 -0.4 6.8 -3.7 15 15 A E < + 0 0 80 -5,-0.7 -12,-0.9 -13,-0.1 -1,-0.1 0.844 53.6 67.7 -79.9 -33.1 0.3 7.1 0.1 16 16 A c B S-a 3 0A 13 -14,-0.2 -12,-0.1 -6,-0.2 6,-0.1 -0.368 100.1 -86.1 -82.0 166.2 2.9 4.4 0.1 17 17 A a > - 0 0 37 -14,-0.7 2,-1.9 1,-0.1 3,-1.1 -0.167 48.9 -93.1 -65.5 167.2 6.4 4.7 -1.5 18 18 A P T 3 S+ 0 0 118 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.177 116.7 69.9 -77.4 48.0 6.8 3.8 -5.2 19 19 A N T 3 S+ 0 0 95 -2,-1.9 13,-0.4 -15,-0.1 2,-0.3 0.175 91.7 55.6-146.0 14.5 7.8 0.2 -4.3 20 20 A Y S < S- 0 0 89 -3,-1.1 2,-0.6 11,-0.2 11,-0.3 -0.940 71.8-121.8-144.8 167.7 4.5 -1.3 -3.0 21 21 A A E -C 30 0C 36 9,-3.6 9,-0.7 -2,-0.3 2,-0.2 -0.938 25.5-134.5-117.4 115.1 0.9 -1.9 -4.1 22 22 A b E -C 29 0C 35 -2,-0.6 7,-0.2 7,-0.2 2,-0.2 -0.477 23.0-134.6 -68.0 129.0 -1.9 -0.4 -1.9 23 23 A S - 0 0 10 5,-3.0 4,-0.1 -2,-0.2 -14,-0.1 -0.512 8.0-152.7 -83.3 153.2 -4.6 -2.9 -1.3 24 24 A S S S+ 0 0 105 -2,-0.2 -1,-0.1 3,-0.2 -2,-0.0 0.502 84.2 71.9-102.5 -5.6 -8.3 -2.0 -1.6 25 25 A K S S- 0 0 185 1,-0.1 -1,-0.1 3,-0.1 -2,-0.0 0.981 127.3 -5.7 -74.1 -57.2 -9.7 -4.6 0.8 26 26 A H S S- 0 0 159 2,-0.1 -2,-0.1 0, 0.0 -1,-0.1 0.204 98.2-110.0-122.3 14.9 -8.4 -3.0 4.1 27 27 A K + 0 0 100 1,-0.2 -18,-0.7 -4,-0.1 2,-0.3 0.951 68.0 145.9 57.8 51.7 -6.3 -0.1 2.6 28 28 A W B -B 8 0B 87 -20,-0.3 -5,-3.0 -7,-0.1 2,-0.3 -0.840 48.2-117.2-118.1 156.8 -2.9 -1.6 3.6 29 29 A c E +C 22 0C 0 -22,-1.7 -23,-3.1 -2,-0.3 2,-0.3 -0.722 40.4 157.7 -94.3 141.9 0.4 -1.4 1.8 30 30 A K E -C 21 0C 67 -9,-0.7 -9,-3.6 -2,-0.3 -11,-0.0 -0.972 44.4 -81.2-153.1 165.7 2.2 -4.6 0.5 31 31 A V - 0 0 72 -2,-0.3 -11,-0.2 -11,-0.3 -27,-0.0 -0.244 31.2-132.0 -67.5 161.6 4.8 -5.6 -2.1 32 32 A Y 0 0 165 -13,-0.4 -1,-0.1 -12,-0.0 -12,-0.1 0.224 360.0 360.0 -99.8 16.0 3.7 -6.0 -5.8 33 33 A L 0 0 214 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 -0.710 360.0 360.0 -83.4 360.0 5.4 -9.5 -6.2