==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 06-AUG-07 2JTU . COMPND 2 MOLECULE: I-SUPERFAMILY CONOTOXIN R11A; . SOURCE 2 SYNTHETIC: YES . AUTHOR D.WEI,R.NORTON . 38 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3261.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 39.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 10.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 21.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 109 0, 0.0 2,-2.7 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-161.9 15.5 -0.3 0.1 2 2 A X + 0 0 162 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.369 360.0 89.5 -72.9 66.5 13.6 -0.3 -3.2 3 3 A S S S- 0 0 97 -2,-2.7 2,-0.0 0, 0.0 0, 0.0 -0.990 72.6-112.7-155.8 161.9 11.0 -2.9 -2.0 4 4 A F - 0 0 110 -2,-0.3 4,-0.1 1,-0.1 14,-0.0 -0.090 19.2-134.3 -84.9-168.5 7.6 -3.1 -0.3 5 5 A a S S+ 0 0 83 2,-0.1 -1,-0.1 12,-0.0 3,-0.1 0.718 91.1 13.5-116.9 -46.5 6.9 -4.5 3.1 6 6 A K S S- 0 0 117 1,-0.2 2,-0.3 4,-0.0 12,-0.1 0.879 114.8 -70.1 -96.4 -70.5 3.8 -6.8 2.8 7 7 A A - 0 0 35 10,-0.2 2,-0.3 3,-0.1 -1,-0.2 -0.916 33.8-122.6 179.2 156.2 3.1 -7.4 -0.9 8 8 A D S S+ 0 0 89 -2,-0.3 20,-0.2 1,-0.2 3,-0.1 -0.774 90.4 21.5-111.9 157.0 1.9 -5.6 -4.1 9 9 A E S S+ 0 0 145 18,-2.4 2,-0.5 -2,-0.3 -1,-0.2 0.468 89.6 129.8 68.4 -0.9 -1.1 -6.6 -6.4 10 10 A K - 0 0 134 17,-0.4 17,-1.6 -3,-0.1 2,-0.3 -0.744 61.9-125.1 -88.8 125.1 -2.5 -8.5 -3.4 11 11 A X + 0 0 121 -2,-0.5 15,-0.3 15,-0.3 2,-0.2 -0.497 44.7 153.8 -69.9 127.6 -6.1 -7.6 -2.7 12 12 A b - 0 0 34 -2,-0.3 3,-0.1 11,-0.3 13,-0.1 -0.815 41.0-136.8-141.2-179.0 -6.7 -6.4 0.9 13 13 A E S S+ 0 0 144 -2,-0.2 2,-0.5 1,-0.2 12,-0.2 0.751 83.3 57.7-115.1 -41.0 -9.2 -4.1 2.8 14 14 A Y > - 0 0 164 1,-0.1 3,-1.3 11,-0.1 -1,-0.2 -0.809 67.5-147.2 -96.6 125.9 -7.2 -2.0 5.2 15 15 A H T 3 S+ 0 0 65 -2,-0.5 3,-0.3 1,-0.2 -1,-0.1 0.812 91.9 78.7 -57.5 -27.6 -4.5 0.2 3.7 16 16 A A T 3 S+ 0 0 95 1,-0.3 2,-2.4 6,-0.1 -1,-0.2 0.871 77.9 68.9 -51.1 -40.9 -2.6 -0.3 7.0 17 17 A D S < S+ 0 0 80 -3,-1.3 -1,-0.3 5,-0.1 2,-0.2 -0.139 102.8 49.4 -75.5 49.4 -1.4 -3.8 5.9 18 18 A c S S- 0 0 9 -2,-2.4 4,-0.2 -3,-0.3 10,-0.1 -0.697 73.8-137.7 178.6 125.2 0.8 -2.2 3.2 19 19 A a S S+ 0 0 92 -2,-0.2 -1,-0.1 2,-0.1 -2,-0.0 0.895 100.7 44.8 -61.6 -36.0 3.4 0.6 3.3 20 20 A N S S- 0 0 32 1,-0.1 2,-0.4 -3,-0.1 9,-0.2 0.584 117.9 -66.9 -77.3-123.4 2.0 2.0 -0.1 21 21 A d E -A 28 0A 7 7,-2.3 2,-2.1 17,-0.1 7,-1.7 -0.932 27.3-146.0-140.0 119.9 -1.8 2.2 -0.4 22 22 A b E +A 27 0A 3 -2,-0.4 3,-0.5 5,-0.2 5,-0.3 -0.504 39.5 172.0 -79.9 78.7 -4.3 -0.7 -0.5 23 23 A L E > +A 26 0A 34 -2,-2.1 3,-4.1 3,-0.7 -11,-0.3 -0.161 55.9 2.8 -80.0-178.7 -6.7 1.0 -2.9 24 24 A S T 3 S- 0 0 122 1,-0.3 -1,-0.2 -13,-0.1 3,-0.1 0.562 134.7 -52.6 4.1 57.5 -9.8 -0.6 -4.6 25 25 A G T 3 S+ 0 0 35 -3,-0.5 2,-0.3 1,-0.2 -1,-0.3 0.842 120.9 98.1 63.9 34.0 -9.2 -3.9 -2.8 26 26 A I E < S-A 23 0A 68 -3,-4.1 2,-1.2 -15,-0.3 -3,-0.7 -0.997 75.1-122.3-150.7 146.8 -5.5 -4.1 -3.9 27 27 A c E +A 22 0A 4 -17,-1.6 -18,-2.4 -2,-0.3 -17,-0.4 -0.700 58.4 139.6 -89.6 95.2 -2.0 -3.3 -2.5 28 28 A A E -A 21 0A 25 -7,-1.7 -7,-2.3 -2,-1.2 -5,-0.1 -0.766 52.4 -91.2-129.5 177.0 -0.6 -0.9 -5.0 29 29 A X S S- 0 0 85 -2,-0.2 2,-2.5 -9,-0.2 -1,-0.2 0.123 72.2 -57.2 -73.0-166.9 1.4 2.4 -5.2 30 30 A S + 0 0 93 1,-0.1 2,-1.8 -10,-0.0 -1,-0.1 -0.388 66.7 163.2 -76.6 71.5 -0.1 5.9 -5.3 31 31 A T + 0 0 75 -2,-2.5 2,-0.3 -10,-0.2 -1,-0.1 -0.457 45.0 86.3 -87.5 67.1 -2.3 5.3 -8.4 32 32 A N + 0 0 35 -2,-1.8 5,-0.1 1,-0.1 -2,-0.0 -0.974 43.2 179.9-156.0 168.4 -4.5 8.4 -7.7 33 33 A W S S+ 0 0 215 -2,-0.3 -1,-0.1 3,-0.1 4,-0.1 0.449 88.5 13.3-138.8 -63.4 -4.8 12.1 -8.3 34 34 A I S S+ 0 0 160 2,-0.1 -2,-0.0 0, 0.0 0, 0.0 0.761 110.7 83.3 -93.7 -28.4 -8.0 13.7 -6.8 35 35 A L S S- 0 0 123 1,-0.1 2,-0.0 0, 0.0 0, 0.0 -0.571 86.9-113.8 -77.6 140.4 -9.0 10.7 -4.6 36 36 A P - 0 0 105 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 -0.278 23.8-150.8 -69.0 155.7 -7.3 10.5 -1.2 37 37 A G 0 0 31 -4,-0.1 -22,-0.1 -5,-0.1 -16,-0.0 0.683 360.0 360.0 -95.1-104.2 -4.8 7.6 -0.6 38 38 A d 0 0 124 -23,-0.1 -17,-0.1 -17,-0.0 -22,-0.0 0.411 360.0 360.0-162.0 360.0 -4.4 6.3 3.0