==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 23-AUG-01 1JU8 . COMPND 2 MOLECULE: LEGINSULIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR T.YAMAZAKI,M.TAKAOKA,E.KATOH,K.HANADA,M.SAKITA,K.SAKATA, . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3190.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 37.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 131 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 135.9 -9.1 0.0 9.4 2 2 A D + 0 0 115 1,-0.2 2,-0.9 32,-0.1 15,-0.1 0.729 360.0 2.9-102.3 -89.9 -6.5 2.5 8.1 3 3 A a S S+ 0 0 0 13,-0.1 31,-0.4 32,-0.1 2,-0.2 -0.792 96.6 105.3-105.2 96.4 -3.8 1.0 5.7 4 4 A N + 0 0 76 -2,-0.9 29,-0.2 29,-0.3 2,-0.2 -0.844 42.0 56.1-150.9-173.1 -4.6 -2.6 5.0 5 5 A G S S- 0 0 57 27,-0.3 27,-1.4 -2,-0.2 2,-0.3 -0.514 103.7 -17.5 80.4-150.2 -6.1 -4.9 2.3 6 6 A A E -A 31 0A 67 25,-0.3 25,-0.4 -2,-0.2 2,-0.4 -0.714 65.9-147.4 -92.8 142.7 -4.4 -4.8 -1.2 7 7 A b E -A 30 0A 7 23,-0.7 23,-0.6 -2,-0.3 8,-0.1 -0.872 8.1-155.9-112.5 144.8 -2.1 -1.9 -2.1 8 8 A S - 0 0 43 6,-1.0 14,-0.1 -2,-0.4 21,-0.0 -0.939 19.2-166.1-121.5 145.8 -1.6 -0.4 -5.6 9 9 A P S S+ 0 0 89 0, 0.0 -1,-0.2 0, 0.0 13,-0.0 0.890 97.1 59.8 -87.5 -49.9 1.2 1.5 -7.1 10 10 A F S S+ 0 0 213 4,-0.1 2,-0.3 2,-0.0 -2,-0.0 0.811 105.4 69.1 -45.7 -28.2 -0.9 2.6 -10.1 11 11 A E S S- 0 0 85 3,-0.1 4,-0.0 0, 0.0 -4,-0.0 -0.662 82.0-137.2 -96.1 151.9 -2.8 4.1 -7.2 12 12 A V S S+ 0 0 116 1,-0.5 -2,-0.0 -2,-0.3 0, 0.0 -0.842 96.6 29.9-160.6 118.6 -1.7 7.0 -5.0 13 13 A P S S- 0 0 57 0, 0.0 -1,-0.5 0, 0.0 5,-0.1 0.562 91.8-146.8 -64.5 153.3 -2.0 7.1 -2.2 14 14 A P S S- 0 0 32 0, 0.0 -6,-1.0 0, 0.0 -2,-0.1 0.630 89.9 -2.8 -66.2 -16.7 -1.7 3.3 -2.5 15 15 A c S S- 0 0 32 -8,-0.1 -11,-0.1 5,-0.1 3,-0.1 0.492 108.5 -88.1-141.2 -46.8 -4.1 3.0 0.4 16 16 A R S S+ 0 0 204 1,-0.2 2,-0.5 4,-0.1 -13,-0.1 0.110 99.4 80.8 149.3 -20.3 -5.1 6.3 1.8 17 17 A S > - 0 0 14 1,-0.1 3,-0.8 -15,-0.1 -1,-0.2 -0.941 54.0-160.8-118.6 125.9 -2.4 7.1 4.4 18 18 A R T 3 S+ 0 0 235 -2,-0.5 -1,-0.1 1,-0.2 0, 0.0 0.871 95.4 61.5 -68.2 -34.3 1.0 8.5 3.5 19 19 A D T 3 S+ 0 0 112 2,-0.0 -1,-0.2 15,-0.0 2,-0.1 0.726 102.0 66.9 -65.2 -16.6 2.4 7.3 6.9 20 20 A a S < S- 0 0 10 -3,-0.8 2,-0.3 14,-0.1 14,-0.2 -0.468 78.6-141.9 -96.8 172.9 1.5 3.8 5.7 21 21 A R E -B 33 0A 161 12,-1.4 12,-1.1 -2,-0.1 2,-0.5 -0.983 11.0-122.1-140.5 152.7 3.2 2.0 2.8 22 22 A b E -B 32 0A 30 -2,-0.3 10,-0.2 10,-0.2 -16,-0.1 -0.758 20.3-157.5 -90.7 130.1 2.2 -0.4 -0.0 23 23 A V E -B 31 0A 52 8,-2.7 8,-1.0 -2,-0.5 2,-0.8 -0.761 7.2-167.4-112.6 89.1 4.1 -3.7 0.0 24 24 A P E +B 30 0A 89 0, 0.0 6,-0.3 0, 0.0 -16,-0.0 -0.625 33.8 135.8 -76.2 109.1 4.0 -5.1 -3.5 25 25 A I + 0 0 115 4,-0.9 2,-0.4 -2,-0.8 5,-0.2 0.612 42.8 90.5-123.8 -35.9 5.1 -8.7 -3.3 26 26 A G S S- 0 0 25 3,-1.5 3,-0.3 -3,-0.3 -1,-0.0 -0.481 83.3-129.5 -65.9 121.9 2.6 -10.5 -5.4 27 27 A L S S+ 0 0 171 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.801 113.5 24.5 -43.8 -24.1 4.2 -10.5 -8.8 28 28 A F S S+ 0 0 211 1,-0.1 2,-0.3 2,-0.0 -1,-0.3 0.525 130.1 35.3-117.9 -13.5 0.8 -9.2 -9.8 29 29 A V - 0 0 62 -3,-0.3 -3,-1.5 -21,-0.0 -4,-0.9 -0.950 53.8-164.3-141.2 164.6 -0.5 -7.7 -6.5 30 30 A G E -AB 7 24A 3 -23,-0.6 -23,-0.7 -2,-0.3 2,-0.4 -0.739 17.7-131.4-133.2-179.1 0.6 -5.8 -3.3 31 31 A F E -AB 6 23A 79 -8,-1.0 -8,-2.7 -25,-0.4 -25,-0.3 -0.999 12.6-125.1-144.0 143.1 -1.0 -5.1 0.0 32 32 A c E + B 0 22A 4 -27,-1.4 2,-0.3 -2,-0.4 -27,-0.3 -0.560 29.2 177.3 -85.9 150.1 -1.5 -2.1 2.2 33 33 A I E - B 0 21A 51 -12,-1.1 -12,-1.4 -29,-0.2 -29,-0.3 -0.998 23.4-150.4-150.1 150.1 -0.3 -1.9 5.8 34 34 A H - 0 0 80 -31,-0.4 -14,-0.1 -2,-0.3 -32,-0.1 -0.773 22.1-173.5-126.8 88.9 -0.3 0.7 8.5 35 35 A P - 0 0 64 0, 0.0 2,-0.2 0, 0.0 -32,-0.1 -0.057 37.7 -81.6 -69.3 176.2 2.6 0.2 10.9 36 36 A T 0 0 149 -16,-0.0 0, 0.0 0, 0.0 0, 0.0 -0.522 360.0 360.0 -82.1 151.4 3.0 2.2 14.1 37 37 A G 0 0 149 -2,-0.2 -17,-0.0 -3,-0.1 -18,-0.0 -0.911 360.0 360.0-134.5 360.0 4.5 5.7 13.8