==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIOBIOTIC, PLANT PROTEIN 23-AUG-07 2JUE . COMPND 2 MOLECULE: KALATA-B1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR N.L.DALY,L.SANDO,D.CRAIK . 29 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 1974.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 48.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 31.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 26 0, 0.0 28,-0.2 0, 0.0 22,-0.1 0.000 360.0 360.0 360.0 28.4 -4.5 0.9 -4.6 2 2 A G - 0 0 75 20,-0.5 2,-0.2 26,-0.3 21,-0.1 0.400 360.0-124.2 -79.9 4.6 -2.3 -0.3 -7.5 3 3 A X + 0 0 28 19,-0.3 19,-3.2 9,-0.1 -1,-0.3 -0.556 50.5 146.8 88.2-153.6 -0.5 -2.5 -5.0 4 4 A X B +A 21 0A 89 17,-0.3 17,-0.3 -2,-0.2 3,-0.1 -0.855 10.4 163.5 118.4-154.5 3.1 -2.5 -4.3 5 5 A X > - 0 0 1 15,-1.6 3,-0.6 -2,-0.3 16,-0.2 -0.342 33.0-145.0 136.2 -56.7 5.0 -3.1 -1.1 6 6 A X T 3 S- 0 0 95 14,-0.4 -1,-0.1 1,-0.3 15,-0.1 0.862 89.9 -37.7 58.9 35.2 8.6 -3.8 -2.1 7 7 A G T 3 S+ 0 0 73 2,-0.2 -1,-0.3 -3,-0.1 3,-0.1 0.472 129.0 99.4 94.1 4.5 8.6 -6.2 0.8 8 8 A G S < S- 0 0 41 -3,-0.6 2,-0.3 1,-0.3 -2,-0.1 0.876 85.1-111.3 -88.5 -43.2 6.5 -4.0 3.0 9 9 A X + 0 0 94 -5,-0.1 -1,-0.3 7,-0.1 -2,-0.2 -0.996 44.7 159.4 150.1-143.2 3.1 -5.6 2.5 10 10 A X + 0 0 36 -2,-0.3 3,-0.1 5,-0.2 7,-0.1 -0.484 11.1 147.5 111.7 178.1 -0.2 -4.7 0.8 11 11 A X S S- 0 0 141 1,-0.2 2,-0.5 -2,-0.2 -1,-0.1 0.695 73.1 -65.9 121.6 41.1 -3.2 -6.7 -0.4 12 12 A X S > S+ 0 0 56 1,-0.1 3,-2.4 4,-0.0 -1,-0.2 -0.780 87.4 111.0 95.0-128.7 -6.4 -4.7 -0.0 13 13 A X T 3 S- 0 0 115 -2,-0.5 3,-0.1 1,-0.3 -1,-0.1 -0.293 105.2 -33.1 55.4-125.5 -7.7 -3.9 3.5 14 14 A G T 3 S- 0 0 48 1,-0.4 11,-0.7 9,-0.0 2,-0.5 0.014 92.1-109.4-114.1 25.8 -7.4 -0.2 4.1 15 15 A X E < +B 24 0A 13 -3,-2.4 -1,-0.4 9,-0.2 2,-0.3 -0.721 51.1 162.6 88.9-129.8 -4.3 0.3 1.9 16 16 A X E +B 23 0A 83 7,-3.3 7,-3.3 -2,-0.5 2,-0.2 -0.768 25.8 96.0 109.8-153.5 -1.1 1.0 3.8 17 17 A X E -B 22 0A 55 -2,-0.3 5,-0.2 5,-0.2 -7,-0.1 -0.448 34.2-172.0 74.4-143.8 2.5 0.7 2.5 18 18 A X E > +B 21 0A 54 3,-1.7 3,-2.1 -2,-0.2 -13,-0.1 -0.549 59.4 86.0 147.0 -62.4 4.3 3.6 1.1 19 19 A X T 3 S- 0 0 176 1,-0.4 -13,-0.1 -14,-0.2 -15,-0.0 0.241 111.4 -6.8 21.9-122.9 7.4 1.9 -0.2 20 20 A X T 3 S- 0 0 57 -17,-0.0 -15,-1.6 0, 0.0 -1,-0.4 -0.903 132.6 -45.8 98.9 -25.4 7.4 0.7 -2.8 21 21 A X E < S+AB 4 18A 60 -3,-2.1 -3,-1.7 -17,-0.3 2,-0.4 -0.934 70.6 125.5 126.7-148.7 3.7 1.4 -3.4 22 22 A X E + B 0 17A 1 -19,-3.2 -20,-0.5 -2,-0.3 2,-0.3 -0.724 27.7 168.4 91.5-136.9 0.5 0.9 -1.3 23 23 A X E + B 0 16A 7 -7,-3.3 -7,-3.3 -2,-0.4 2,-0.5 -0.893 19.2 132.3 125.1-156.1 -1.8 3.8 -0.7 24 24 A X E > S+CB 27 15A 79 3,-3.4 3,-3.0 -2,-0.3 -9,-0.2 -0.940 87.8 26.1 110.6-120.5 -5.3 4.3 0.6 25 25 A X T 3 S+ 0 0 134 -11,-0.7 -1,-0.1 -2,-0.5 3,-0.1 0.610 134.1 42.8 -49.5 -16.9 -5.7 7.0 3.2 26 26 A G T 3 S- 0 0 50 1,-0.3 2,-0.5 -10,-0.1 -1,-0.3 0.278 117.7-107.0-117.7 10.4 -2.7 8.6 1.5 27 27 A X B < +C 24 0A 95 -3,-3.0 -3,-3.4 1,-0.1 2,-2.5 -0.902 65.3 139.4 106.6-124.1 -3.5 8.1 -2.1 28 28 A X 0 0 85 -2,-0.5 -26,-0.3 -5,-0.3 -5,-0.2 -0.205 360.0 360.0 74.5 -50.4 -1.5 5.5 -4.1 29 29 A X 0 0 107 -2,-2.5 -1,-0.2 -28,-0.2 -6,-0.1 0.124 360.0 360.0 99.9 360.0 -4.7 4.5 -5.8