==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATION 23-AUG-07 2JUF . COMPND 2 MOLECULE: P53-ASSOCIATED PARKIN-LIKE CYTOPLASMIC PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR L.KAUSTOV,J.C.C.LIAO,S.LEMAK,S.DUAN,R.MUHANDIRAM,M.KARRA, . 64 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4019.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 43 67.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 19 29.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 14.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 14 A Y > 0 0 103 0, 0.0 4,-2.1 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -30.8 -11.6 4.8 -3.9 2 15 A G H > + 0 0 11 1,-0.2 4,-1.9 2,-0.2 5,-0.1 0.798 360.0 54.1 -62.5 -32.8 -8.9 2.7 -5.6 3 16 A E H > S+ 0 0 154 2,-0.2 4,-1.4 1,-0.1 -1,-0.2 0.944 107.0 51.1 -62.9 -48.9 -9.1 5.0 -8.6 4 17 A Y H > S+ 0 0 123 1,-0.2 4,-1.7 2,-0.2 3,-0.5 0.915 113.8 42.3 -57.5 -50.4 -8.4 8.1 -6.3 5 18 A V H X S+ 0 0 0 -4,-2.1 4,-1.9 1,-0.2 -1,-0.2 0.899 109.1 58.9 -67.7 -39.0 -5.3 6.6 -4.6 6 19 A Q H < S+ 0 0 89 -4,-1.9 -1,-0.2 1,-0.2 -2,-0.2 0.803 111.0 43.9 -56.9 -31.3 -4.0 5.2 -8.0 7 20 A Q H < S+ 0 0 142 -4,-1.4 -1,-0.2 -3,-0.5 -2,-0.2 0.867 121.3 35.4 -81.9 -40.6 -3.9 8.8 -9.3 8 21 A T H < S+ 0 0 52 -4,-1.7 2,-0.7 -5,-0.1 -2,-0.2 0.473 81.0 118.5-100.5 -6.1 -2.4 10.6 -6.3 9 22 A L < - 0 0 15 -4,-1.9 6,-0.0 -5,-0.2 -4,-0.0 -0.536 52.3-156.1 -69.7 107.8 0.1 7.9 -5.0 10 23 A Q > - 0 0 127 -2,-0.7 2,-1.8 1,-0.1 3,-1.8 -0.613 29.1 -97.4 -87.5 142.4 3.5 9.7 -5.2 11 24 A P T 3 S+ 0 0 121 0, 0.0 22,-0.1 0, 0.0 -1,-0.1 -0.406 114.9 14.7 -59.6 79.2 6.9 7.6 -5.6 12 25 A G T 3 S+ 0 0 39 -2,-1.8 2,-0.1 1,-0.2 21,-0.1 0.544 93.0 131.9 131.3 19.3 7.9 7.8 -1.8 13 26 A M < - 0 0 40 -3,-1.8 19,-2.3 1,-0.1 2,-0.4 -0.416 60.9 -92.9 -93.9 174.7 4.8 8.9 0.2 14 27 A R E -A 31 0A 100 17,-0.2 50,-1.1 -2,-0.1 49,-0.3 -0.731 43.1-169.6 -97.0 127.0 3.2 7.4 3.3 15 28 A V E -A 30 0A 0 15,-1.9 15,-1.4 -2,-0.4 2,-0.3 -0.587 9.6-147.0-116.0 172.3 0.4 4.8 2.9 16 29 A R E -AB 29 61A 68 45,-2.8 45,-2.7 13,-0.2 2,-0.6 -0.987 14.2-131.4-144.6 141.0 -2.1 3.1 5.3 17 30 A M E - B 0 60A 1 11,-2.6 10,-2.3 -2,-0.3 11,-0.2 -0.894 19.2-178.5 -99.0 112.1 -3.7 -0.4 5.3 18 31 A L S S+ 0 0 74 41,-1.8 2,-0.3 -2,-0.6 8,-0.1 0.477 71.2 41.2 -89.5 -3.7 -7.6 -0.1 5.7 19 32 A D S S- 0 0 70 40,-0.5 2,-0.3 6,-0.2 8,-0.2 -0.964 96.4 -94.2-140.7 154.0 -8.1 -3.9 5.8 20 33 A D - 0 0 116 -2,-0.3 5,-0.2 6,-0.1 2,-0.2 -0.560 45.8-161.8 -75.6 127.0 -6.2 -6.9 7.3 21 34 A Y - 0 0 44 3,-2.1 5,-0.1 -2,-0.3 34,-0.1 -0.539 36.2 -87.2-107.1 172.7 -3.6 -8.4 4.9 22 35 A E S S- 0 0 162 1,-0.2 -2,-0.0 -2,-0.2 3,-0.0 0.743 124.4 -2.5 -50.1 -35.8 -1.7 -11.7 4.7 23 36 A E S S+ 0 0 60 2,-0.0 2,-0.3 0, 0.0 -1,-0.2 0.233 123.5 84.3-138.6 3.6 1.2 -10.4 6.9 24 37 A I - 0 0 4 24,-0.1 -3,-2.1 25,-0.1 2,-0.2 -0.868 69.1-130.7-118.8 144.2 -0.0 -6.8 7.5 25 38 A S > - 0 0 66 -2,-0.3 3,-1.7 -5,-0.2 2,-0.6 -0.600 27.1-105.0 -91.8 153.7 -2.5 -5.4 10.1 26 39 A A T 3 S+ 0 0 61 1,-0.2 -8,-0.2 -2,-0.2 -6,-0.1 -0.738 117.2 33.6 -72.1 116.1 -5.5 -3.1 9.5 27 40 A G T 3 S+ 0 0 33 -10,-2.3 -1,-0.2 -2,-0.6 2,-0.1 0.258 91.8 128.0 110.7 -5.7 -4.1 0.2 10.8 28 41 A D < - 0 0 14 -3,-1.7 -11,-2.6 -11,-0.2 -1,-0.4 -0.449 45.6-146.4 -79.2 156.2 -0.5 -0.6 9.7 29 42 A E E +A 16 0A 45 -13,-0.2 18,-2.1 -2,-0.1 19,-0.3 -0.871 20.7 163.8-129.9 158.2 1.5 2.0 7.5 30 43 A G E -AC 15 46A 1 -15,-1.4 -15,-1.9 -2,-0.3 2,-0.3 -0.705 31.7-100.0-149.3-166.9 4.0 1.9 4.7 31 44 A E E -AC 14 45A 81 14,-0.5 14,-1.8 -17,-0.2 2,-0.4 -0.998 33.4-111.9-135.5 139.3 5.8 3.8 1.9 32 45 A F E + C 0 44A 12 -19,-2.3 12,-0.2 -2,-0.3 3,-0.1 -0.578 40.9 164.8 -69.1 119.5 5.1 3.7 -1.9 33 46 A R E - 0 0 116 10,-1.3 2,-0.3 -2,-0.4 -1,-0.2 0.797 63.9 -35.9-103.6 -47.0 8.1 2.1 -3.5 34 47 A Q E - C 0 43A 91 9,-1.4 9,-1.3 2,-0.0 -1,-0.4 -0.918 55.4-155.4-172.2 156.9 6.7 1.3 -7.0 35 48 A S - 0 0 47 -2,-0.3 2,-0.4 7,-0.2 7,-0.1 -0.716 20.5-116.5-127.4 178.2 3.4 0.3 -8.6 36 49 A N - 0 0 58 3,-0.5 -2,-0.0 -2,-0.2 0, 0.0 -0.981 15.3-147.9-118.3 136.3 2.1 -1.4 -11.8 37 50 A N S S+ 0 0 156 -2,-0.4 -1,-0.1 1,-0.2 -31,-0.0 0.948 98.1 21.4 -67.9 -52.7 -0.0 0.6 -14.3 38 51 A G S S+ 0 0 70 1,-0.1 -1,-0.2 2,-0.0 -2,-0.0 0.672 116.1 71.1 -90.3 -23.3 -2.2 -2.2 -15.6 39 52 A I S S- 0 0 103 1,-0.1 -3,-0.5 2,-0.1 -1,-0.1 -0.885 72.5-150.1-101.7 114.1 -1.7 -4.6 -12.6 40 53 A P + 0 0 56 0, 0.0 2,-0.6 0, 0.0 17,-0.3 0.751 68.0 96.8 -59.5 -33.5 -3.6 -3.4 -9.4 41 54 A P - 0 0 40 0, 0.0 2,-0.4 0, 0.0 15,-0.2 -0.502 58.8-165.8 -61.7 107.7 -1.2 -4.9 -6.6 42 55 A V E - D 0 55A 0 13,-2.5 13,-2.2 -2,-0.6 2,-0.5 -0.820 18.1-128.0 -89.0 136.5 1.2 -2.0 -5.7 43 56 A Q E +CD 34 54A 32 -9,-1.3 -9,-1.4 -2,-0.4 -10,-1.3 -0.814 35.5 172.0 -90.4 123.3 4.4 -3.0 -3.7 44 57 A V E -CD 32 53A 0 9,-1.6 9,-2.0 -2,-0.5 2,-0.9 -0.988 37.2-116.1-137.0 136.8 4.7 -0.9 -0.5 45 58 A F E -CD 31 52A 78 -14,-1.8 -14,-0.5 -2,-0.3 2,-0.4 -0.685 33.1-157.3 -82.5 105.6 7.2 -1.3 2.4 46 59 A W E >> -CD 30 51A 0 5,-2.3 4,-1.5 -2,-0.9 5,-0.9 -0.697 11.8-149.1 -90.1 130.6 5.1 -2.1 5.5 47 60 A Q T 45S+ 0 0 114 -18,-2.1 -1,-0.1 -2,-0.4 -17,-0.1 0.781 93.3 55.5 -70.3 -31.3 6.6 -1.4 9.0 48 61 A S T 45S+ 0 0 75 -19,-0.3 -1,-0.2 1,-0.2 -24,-0.1 0.927 120.0 29.7 -70.1 -46.1 4.8 -4.3 10.9 49 62 A T T 45S- 0 0 42 2,-0.2 -2,-0.2 -24,-0.1 -1,-0.2 0.651 103.3-134.1 -86.4 -18.1 6.1 -7.1 8.5 50 63 A G T <5S+ 0 0 43 -4,-1.5 2,-0.3 1,-0.2 -3,-0.2 0.671 70.2 82.6 75.8 19.7 9.3 -5.1 7.8 51 64 A R E > - 0 0 79 -2,-0.3 3,-0.8 -15,-0.2 4,-0.6 -0.588 20.4-126.3 -89.5 147.1 -4.8 -3.6 -3.8 57 70 A W G >4 S+ 0 0 10 -17,-0.3 3,-0.8 1,-0.2 -52,-0.1 0.855 108.3 55.3 -59.8 -42.4 -5.6 0.1 -4.5 58 71 A H G 34 S+ 0 0 115 1,-0.3 -1,-0.2 -53,-0.1 -55,-0.0 0.762 114.6 41.1 -67.0 -24.9 -9.1 -0.0 -3.0 59 72 A M G <4 S+ 0 0 52 -3,-0.8 -41,-1.8 -57,-0.0 2,-0.6 0.424 98.9 92.0 -99.9 -1.8 -7.6 -1.4 0.3 60 73 A L E << +B 17 0A 1 -3,-0.8 2,-0.3 -4,-0.6 -43,-0.2 -0.850 57.1 178.7 -92.7 121.2 -4.7 1.1 0.1 61 74 A E E -B 16 0A 55 -45,-2.7 -45,-2.8 -2,-0.6 2,-0.5 -0.843 21.1-139.7-115.7 151.6 -5.4 4.4 1.9 62 75 A I + 0 0 29 -2,-0.3 -47,-0.2 -47,-0.2 -33,-0.0 -0.986 34.6 152.7-114.2 123.2 -3.1 7.5 2.3 63 76 A L 0 0 102 -2,-0.5 -48,-0.1 -49,-0.3 -1,-0.1 0.213 360.0 360.0-121.7 3.7 -3.1 9.3 5.7 64 77 A G 0 0 85 -50,-1.1 -49,-0.1 -48,-0.0 -2,-0.0 0.958 360.0 360.0 -69.5 360.0 0.5 10.6 5.2