==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 30-AUG-07 2JUJ . COMPND 2 MOLECULE: E3 UBIQUITIN-PROTEIN LIGASE CBL; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR Z.R.ZHOU,J.HONG,D.H.LIN,H.Y.HU . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4390.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 55.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 42.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 142 0, 0.0 3,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 177.3 -1.6 18.5 3.6 2 2 A T - 0 0 130 1,-0.2 2,-1.8 2,-0.0 0, 0.0 0.963 360.0-130.4 49.9 92.4 -4.0 18.4 0.6 3 3 A A - 0 0 108 4,-0.0 -1,-0.2 2,-0.0 3,-0.0 -0.525 27.5-154.5 -70.7 85.8 -5.5 14.9 0.5 4 4 A S > - 0 0 58 -2,-1.8 4,-1.7 -3,-0.3 5,-0.2 -0.491 9.3-150.7 -68.4 127.1 -4.9 14.2 -3.2 5 5 A P H > S+ 0 0 95 0, 0.0 4,-1.5 0, 0.0 -1,-0.1 0.795 93.0 53.2 -69.3 -29.2 -7.4 11.7 -4.6 6 6 A Q H > S+ 0 0 154 2,-0.2 4,-1.1 1,-0.2 5,-0.1 0.895 108.9 46.6 -77.3 -41.2 -4.9 10.4 -7.3 7 7 A L H > S+ 0 0 42 2,-0.2 4,-1.2 1,-0.2 3,-0.4 0.911 115.0 47.6 -66.0 -41.7 -2.1 9.6 -4.8 8 8 A S H X S+ 0 0 62 -4,-1.7 4,-1.9 1,-0.2 -2,-0.2 0.841 106.4 59.0 -66.3 -32.5 -4.7 7.9 -2.6 9 9 A S H X S+ 0 0 64 -4,-1.5 4,-1.5 2,-0.2 -1,-0.2 0.781 95.9 63.0 -63.5 -29.8 -5.9 6.2 -5.8 10 10 A E H X S+ 0 0 45 -4,-1.1 4,-1.3 -3,-0.4 5,-0.3 0.927 103.0 48.0 -61.3 -44.9 -2.4 4.8 -6.1 11 11 A I H X S+ 0 0 38 -4,-1.2 4,-2.8 1,-0.2 3,-0.4 0.949 108.9 53.6 -54.8 -49.9 -3.0 3.0 -2.8 12 12 A E H X S+ 0 0 113 -4,-1.9 4,-2.5 1,-0.2 -1,-0.2 0.787 100.1 65.3 -56.9 -28.7 -6.3 1.8 -4.2 13 13 A N H < S+ 0 0 74 -4,-1.5 4,-0.3 -3,-0.2 -1,-0.2 0.951 114.0 27.3 -62.3 -51.3 -4.3 0.5 -7.2 14 14 A L H ><>S+ 0 0 4 -4,-1.3 5,-1.6 -3,-0.4 3,-0.7 0.761 115.9 65.7 -83.7 -24.1 -2.4 -2.2 -5.2 15 15 A M H ><5S+ 0 0 61 -4,-2.8 3,-2.0 -5,-0.3 -2,-0.2 0.916 96.1 56.6 -54.4 -45.6 -5.3 -2.3 -2.7 16 16 A S T 3<5S+ 0 0 111 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.731 99.4 60.9 -61.9 -21.6 -7.5 -3.7 -5.5 17 17 A Q T < 5S- 0 0 93 -3,-0.7 -1,-0.3 -4,-0.3 -2,-0.2 0.603 126.7 -99.6 -82.8 -12.5 -4.9 -6.5 -5.8 18 18 A G T < 5 + 0 0 34 -3,-2.0 31,-0.2 -4,-0.4 -3,-0.2 0.273 69.3 154.2 115.5 -10.6 -5.6 -7.5 -2.2 19 19 A Y < - 0 0 30 -5,-1.6 2,-0.4 1,-0.1 -1,-0.3 -0.074 47.0-106.6 -55.1 153.0 -2.6 -5.8 -0.5 20 20 A S >> - 0 0 40 27,-0.2 4,-2.1 1,-0.1 3,-0.6 -0.688 10.6-141.6 -96.4 133.0 -3.0 -4.9 3.1 21 21 A Y H 3> S+ 0 0 182 -2,-0.4 4,-2.4 1,-0.3 5,-0.2 0.724 99.5 63.9 -64.1 -26.1 -3.5 -1.3 4.3 22 22 A Q H 3> S+ 0 0 132 2,-0.2 4,-1.2 1,-0.2 -1,-0.3 0.945 112.8 33.8 -60.4 -48.3 -1.3 -1.9 7.3 23 23 A D H <> S+ 0 0 21 -3,-0.6 4,-2.9 2,-0.2 -2,-0.2 0.745 112.8 63.8 -80.3 -25.4 1.7 -2.6 5.1 24 24 A I H X S+ 0 0 7 -4,-2.1 4,-2.0 2,-0.2 -2,-0.2 0.949 105.3 43.7 -60.2 -50.2 0.4 -0.0 2.6 25 25 A Q H X S+ 0 0 116 -4,-2.4 4,-1.6 1,-0.2 -1,-0.2 0.873 112.4 55.4 -62.6 -34.9 0.7 2.7 5.1 26 26 A K H X S+ 0 0 107 -4,-1.2 4,-1.3 1,-0.2 -2,-0.2 0.921 105.7 50.6 -61.0 -46.4 4.1 1.2 6.0 27 27 A A H X S+ 0 0 1 -4,-2.9 4,-2.8 1,-0.2 7,-0.2 0.886 107.0 55.7 -58.2 -39.5 5.1 1.4 2.3 28 28 A L H <>S+ 0 0 29 -4,-2.0 5,-3.3 1,-0.2 6,-0.3 0.854 102.1 55.1 -64.1 -36.9 4.1 5.1 2.4 29 29 A V H <5S+ 0 0 94 -4,-1.6 -1,-0.2 -3,-0.2 3,-0.2 0.844 117.3 35.7 -68.9 -31.2 6.4 5.9 5.3 30 30 A I H <5S+ 0 0 83 -4,-1.3 -2,-0.2 -3,-0.2 -1,-0.2 0.818 120.0 49.2 -87.2 -32.1 9.4 4.5 3.4 31 31 A A T ><5S- 0 0 0 -4,-2.8 3,-0.7 -5,-0.2 7,-0.2 0.316 108.6-124.7 -86.9 8.7 8.2 5.7 0.1 32 32 A Q T 3 5S- 0 0 108 1,-0.3 -3,-0.2 -4,-0.2 -4,-0.1 0.912 74.6 -53.8 39.7 54.1 7.5 9.2 1.6 33 33 A N T 3 S+ 0 0 58 3,-0.1 4,-1.4 2,-0.1 5,-0.1 0.981 100.9 14.2 -73.3 -71.9 3.1 6.6 -6.0 36 36 A E H > S+ 0 0 119 1,-0.2 4,-2.9 2,-0.2 5,-0.3 0.853 120.3 64.9 -78.1 -35.4 5.1 3.7 -7.3 37 37 A M H > S+ 0 0 82 1,-0.2 4,-1.5 2,-0.2 -1,-0.2 0.864 107.5 43.8 -59.7 -34.5 7.6 3.5 -4.4 38 38 A A H > S+ 0 0 7 -4,-0.3 4,-1.9 -7,-0.2 -1,-0.2 0.957 115.8 44.4 -73.2 -52.4 4.8 2.5 -2.0 39 39 A K H X S+ 0 0 35 -4,-1.4 4,-1.6 1,-0.2 -2,-0.2 0.816 114.0 53.8 -62.4 -28.8 3.1 0.0 -4.4 40 40 A N H X S+ 0 0 80 -4,-2.9 4,-2.5 2,-0.2 -1,-0.2 0.879 104.4 53.3 -73.0 -38.8 6.6 -1.3 -5.2 41 41 A I H X S+ 0 0 21 -4,-1.5 4,-3.4 -5,-0.3 5,-0.3 0.881 106.7 51.9 -66.0 -38.6 7.4 -1.9 -1.5 42 42 A L H < S+ 0 0 0 -4,-1.9 -1,-0.2 2,-0.2 -2,-0.2 0.940 111.0 49.0 -60.0 -44.8 4.3 -3.9 -1.0 43 43 A R H < S+ 0 0 162 -4,-1.6 -2,-0.2 1,-0.2 -1,-0.2 0.914 117.9 40.5 -56.6 -45.3 5.3 -6.0 -4.0 44 44 A E H < S+ 0 0 112 -4,-2.5 -2,-0.2 -5,-0.1 -1,-0.2 0.865 132.4 16.6 -73.1 -39.2 8.8 -6.4 -2.6 45 45 A F S < S+ 0 0 146 -4,-3.4 -3,-0.2 -5,-0.2 -2,-0.1 0.867 110.5 49.5-101.3 -84.5 7.8 -6.9 1.0 46 46 A V - 0 0 17 -5,-0.3 2,-0.2 -23,-0.1 -1,-0.1 -0.237 65.7-149.3 -71.1 148.5 4.3 -7.9 2.0 47 47 A S - 0 0 101 -3,-0.0 2,-0.4 -29,-0.0 -27,-0.2 -0.711 9.6-120.7-117.1 167.8 2.4 -10.7 0.3 48 48 A I - 0 0 38 -2,-0.2 -29,-0.1 1,-0.1 -30,-0.0 -0.923 11.7-169.0-115.2 133.7 -1.3 -11.4 -0.4 49 49 A S + 0 0 126 -2,-0.4 -1,-0.1 -31,-0.2 -31,-0.1 0.580 55.9 117.0 -89.9 -12.6 -3.3 -14.4 0.8 50 50 A S - 0 0 44 -32,-0.1 2,-0.2 1,-0.1 3,-0.1 -0.343 68.2-121.1 -62.3 131.0 -6.1 -13.5 -1.6 51 51 A P S S+ 0 0 118 0, 0.0 -1,-0.1 0, 0.0 4,-0.1 -0.550 77.5 8.1 -81.1 137.0 -6.7 -16.3 -4.3 52 52 A A + 0 0 79 -2,-0.2 3,-0.2 2,-0.1 -2,-0.0 0.983 60.2 172.9 62.1 88.2 -6.4 -15.6 -8.0 53 53 A H S S+ 0 0 94 1,-0.2 3,-0.1 -3,-0.1 -35,-0.0 0.932 79.3 38.7 -87.2 -56.0 -5.1 -12.1 -8.6 54 54 A V S S+ 0 0 142 1,-0.2 -1,-0.2 2,-0.1 -2,-0.1 0.009 78.6 120.9 -87.7 31.9 -4.5 -12.1 -12.4 55 55 A A 0 0 69 -3,-0.2 -1,-0.2 -4,-0.1 -2,-0.0 0.065 360.0 360.0 -84.3 25.2 -7.7 -14.1 -12.9 56 56 A T 0 0 200 -3,-0.1 -2,-0.1 0, 0.0 -3,-0.1 0.017 360.0 360.0-153.2 360.0 -9.1 -11.2 -15.0