==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 31-AUG-07 2JUM . COMPND 2 MOLECULE: INSULIN A CHAIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.HUANG,S.CHAN,Q.HUA,Y.CHU,R.WANG,B.KLAPROTH,W.JIA, . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3921.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 60.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 9.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 15.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 25.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 58 0, 0.0 5,-0.2 0, 0.0 49,-0.1 0.000 360.0 360.0 360.0 40.3 -1.5 -0.9 10.4 2 2 A I >> + 0 0 2 47,-0.6 4,-2.6 1,-0.2 3,-0.7 0.796 360.0 54.5 -78.1 -26.0 -1.8 -0.9 6.6 3 3 A T T 34 S+ 0 0 40 46,-0.7 4,-0.4 1,-0.3 2,-0.3 0.821 103.5 56.6 -76.4 -27.9 -2.0 -4.7 6.6 4 4 A E T 34 S+ 0 0 132 1,-0.1 -1,-0.3 2,-0.1 -2,-0.1 -0.167 125.3 18.8 -94.4 42.7 -4.9 -4.6 9.0 5 5 A Q T <> S+ 0 0 76 -3,-0.7 4,-0.8 -2,-0.3 3,-0.4 0.165 120.9 52.8-172.5 -44.4 -7.0 -2.4 6.7 6 6 A a T < S+ 0 0 0 -4,-2.6 22,-1.2 1,-0.2 5,-0.2 0.522 112.7 49.1 -86.4 -2.2 -5.7 -2.5 3.1 7 7 A b T 4 S+ 0 0 51 -4,-0.4 -1,-0.2 -5,-0.3 -4,-0.1 0.390 107.8 52.6-114.5 2.2 -5.9 -6.3 3.2 8 8 A T T 4 S- 0 0 116 -3,-0.4 2,-0.2 1,-0.1 -2,-0.2 0.598 126.6 -1.2-108.0 -17.9 -9.5 -6.5 4.6 9 9 A S S < S- 0 0 61 -4,-0.8 19,-0.6 19,-0.2 2,-0.3 -0.789 91.5 -74.0-150.8-167.1 -11.0 -4.2 1.9 10 10 A I E -A 27 0A 71 -2,-0.2 17,-0.2 17,-0.1 2,-0.1 -0.797 42.5-166.4-103.7 144.7 -9.8 -2.2 -1.1 11 11 A a E -A 26 0A 19 15,-1.3 15,-0.5 -2,-0.3 2,-0.4 -0.236 19.9-108.5-110.2-158.3 -7.8 1.1 -0.8 12 12 A S >> - 0 0 64 1,-0.1 4,-3.4 -2,-0.1 3,-0.9 -0.964 12.4-133.4-142.6 125.2 -6.9 3.9 -3.2 13 13 A L H 3> S+ 0 0 58 -2,-0.4 4,-2.1 1,-0.3 5,-0.2 0.873 107.3 70.2 -42.6 -36.9 -3.5 4.8 -4.7 14 14 A Y H 34 S+ 0 0 194 1,-0.2 3,-0.4 2,-0.2 4,-0.4 0.964 115.4 21.8 -45.1 -62.1 -4.4 8.3 -3.6 15 15 A Q H X4 S+ 0 0 60 -3,-0.9 3,-3.5 1,-0.2 4,-0.5 0.944 114.0 70.1 -72.3 -47.5 -4.0 7.3 -0.0 16 16 A L H >< S+ 0 0 1 -4,-3.4 3,-0.9 1,-0.3 -1,-0.2 0.791 95.3 59.9 -41.0 -27.6 -1.7 4.3 -0.8 17 17 A E G >< S+ 0 0 108 -4,-2.1 3,-1.0 -3,-0.4 -1,-0.3 0.797 88.2 69.4 -77.2 -25.0 0.8 7.0 -1.7 18 18 A N G < S+ 0 0 139 -3,-3.5 -1,-0.2 -4,-0.4 -2,-0.2 0.546 85.8 73.1 -71.0 -0.7 0.8 8.6 1.8 19 19 A Y G < S+ 0 0 65 -3,-0.9 28,-1.0 -4,-0.5 -1,-0.3 0.092 78.0 101.2-100.9 28.3 2.5 5.4 3.0 20 20 A c B < B 46 0B 24 -3,-1.0 26,-0.2 26,-0.2 25,-0.1 -0.439 360.0 360.0-101.2-179.5 5.9 6.3 1.4 21 21 A N 0 0 162 24,-1.3 -2,-0.1 -2,-0.1 -3,-0.0 -0.819 360.0 360.0 -94.9 360.0 9.1 7.7 3.0 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 180 0, 0.0 3,-0.1 0, 0.0 -10,-0.0 0.000 360.0 360.0 360.0 76.4 -7.0 1.9 -11.3 24 2 B V + 0 0 130 1,-0.4 2,-0.1 -12,-0.0 -12,-0.0 -0.026 360.0 7.3-132.1 31.7 -10.7 1.1 -10.5 25 3 B N - 0 0 118 -14,-0.0 2,-0.5 2,-0.0 -1,-0.4 -0.173 65.2-172.5 153.2 107.3 -10.2 -1.4 -7.6 26 4 B Q E -A 11 0A 26 -15,-0.5 -15,-1.3 -3,-0.1 2,-0.6 -0.962 8.1-159.2-123.9 126.0 -7.0 -2.4 -5.9 27 5 B H E -A 10 0A 133 -2,-0.5 2,-0.4 -17,-0.2 -17,-0.1 -0.873 14.0-168.0-102.1 121.8 -6.6 -5.2 -3.3 28 6 B L + 0 0 3 -22,-1.2 2,-0.2 -19,-0.6 -19,-0.2 -0.900 24.3 131.5-113.1 139.5 -3.5 -4.9 -1.1 29 7 B b > - 0 0 52 -2,-0.4 3,-1.3 1,-0.3 4,-0.4 -0.649 67.7 -38.8 177.6 121.8 -2.2 -7.6 1.2 30 8 B G T >> S+ 0 0 21 1,-0.3 3,-1.5 2,-0.2 4,-1.4 -0.245 132.2 8.4 54.2-136.4 1.3 -9.1 1.8 31 9 B S H 3> S+ 0 0 101 1,-0.3 4,-1.7 2,-0.2 3,-0.4 0.898 137.2 49.2 -40.0 -51.4 3.2 -9.4 -1.4 32 10 B D H <> S+ 0 0 88 -3,-1.3 4,-2.3 1,-0.2 5,-0.3 0.856 101.3 66.8 -61.5 -30.4 0.5 -7.5 -3.2 33 11 B L H <> S+ 0 0 0 -3,-1.5 4,-2.2 -4,-0.4 -1,-0.2 0.952 105.2 40.6 -56.3 -49.1 0.7 -4.8 -0.5 34 12 B V H X S+ 0 0 26 -4,-1.4 4,-1.8 -3,-0.4 -1,-0.2 0.867 108.7 63.4 -69.6 -32.4 4.2 -3.8 -1.6 35 13 B E H X S+ 0 0 113 -4,-1.7 4,-1.7 -5,-0.3 5,-0.2 0.978 110.2 36.7 -56.1 -55.5 3.2 -4.1 -5.2 36 14 B A H X S+ 0 0 4 -4,-2.3 4,-1.6 1,-0.2 5,-0.2 0.968 120.4 47.1 -62.7 -49.4 0.7 -1.3 -4.9 37 15 B L H X S+ 0 0 1 -4,-2.2 4,-2.6 -5,-0.3 5,-0.4 0.745 106.4 66.1 -63.6 -18.6 2.9 0.7 -2.5 38 16 B Y H X S+ 0 0 124 -4,-1.8 4,-2.2 -5,-0.2 -2,-0.2 0.986 100.5 42.4 -69.1 -58.6 5.7 -0.1 -5.0 39 17 B L H < S+ 0 0 92 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.888 120.5 45.8 -58.2 -35.0 4.4 2.0 -7.9 40 18 B V H < S+ 0 0 25 -4,-1.6 -1,-0.2 -5,-0.2 -2,-0.2 0.958 125.0 30.4 -73.1 -48.7 3.5 4.8 -5.5 41 19 B c H < S+ 0 0 7 -4,-2.6 -3,-0.2 -5,-0.2 -2,-0.2 0.986 84.7 171.5 -73.2 -62.4 6.8 4.7 -3.6 42 20 B G >< - 0 0 33 -4,-2.2 2,-2.5 -5,-0.4 3,-1.5 -0.513 69.6 -12.1 82.9-153.6 9.2 3.6 -6.3 43 21 B E T 3 S+ 0 0 207 1,-0.2 -1,-0.2 -2,-0.2 -5,-0.0 -0.090 123.1 82.2 -74.4 47.5 12.9 3.6 -5.5 44 22 B R T 3 S- 0 0 184 -2,-2.5 -1,-0.2 -6,-0.2 -2,-0.1 0.439 98.0-115.5-125.7 -8.6 12.1 5.6 -2.4 45 23 B G < - 0 0 34 -3,-1.5 -24,-1.3 -7,-0.1 2,-0.1 0.388 24.7-134.8 82.1 138.5 11.1 2.8 -0.0 46 24 B F B -B 20 0B 52 -26,-0.2 -26,-0.2 1,-0.1 -12,-0.1 -0.409 13.2-120.1-113.2-168.1 7.6 2.2 1.5 47 25 B F + 0 0 133 -28,-1.0 -1,-0.1 -2,-0.1 -27,-0.1 0.848 31.3 169.1-102.3 -63.5 6.4 1.4 5.0 48 26 B Y + 0 0 100 -29,-0.2 2,-0.2 1,-0.1 -14,-0.1 0.944 26.8 174.3 49.3 49.8 4.5 -1.9 4.8 49 27 B T - 0 0 71 1,-0.1 -46,-0.7 2,-0.0 -47,-0.6 -0.575 32.7-108.4 -88.0 152.8 4.5 -2.0 8.7 50 28 B K - 0 0 154 -2,-0.2 -1,-0.1 1,-0.1 -48,-0.0 -0.532 14.8-143.9 -80.4 147.9 2.6 -4.7 10.6 51 29 B P 0 0 51 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.917 360.0 360.0 -76.4 -48.5 -0.6 -3.7 12.5 52 30 B T 0 0 157 -51,-0.0 -48,-0.0 0, 0.0 0, 0.0 -0.896 360.0 360.0-134.9 360.0 -0.1 -6.1 15.5