==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 05-SEP-07 2JUV . COMPND 2 MOLECULE: INSULIN A CHAIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.HUANG,S.CHAN,Q.HUA,Y.CHU,R.WANG,B.KLAPROTH,W.JIA, . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3857.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 60.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 13.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 27.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 7.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 57 0, 0.0 4,-1.3 0, 0.0 5,-0.3 0.000 360.0 360.0 360.0 62.2 0.2 -4.1 9.8 2 2 A I H >> + 0 0 9 1,-0.2 4,-3.5 2,-0.2 3,-0.5 0.914 360.0 56.8 -56.8 -40.5 0.7 -3.5 6.1 3 3 A X H 3>>S+ 0 0 16 1,-0.3 4,-1.8 2,-0.2 5,-0.7 0.920 101.3 55.5 -58.8 -42.1 2.8 -0.5 6.8 4 4 A E H 3>5S+ 0 0 113 -3,-0.2 4,-0.5 1,-0.2 -1,-0.3 0.852 120.4 32.0 -61.8 -29.6 5.2 -2.6 8.9 5 5 A Q H <<>S+ 0 0 130 -4,-1.3 5,-0.8 -3,-0.5 -2,-0.2 0.698 128.0 40.8 -98.7 -22.3 5.7 -4.8 5.9 6 6 A a H <5S+ 0 0 3 -4,-3.5 22,-1.2 -5,-0.3 -3,-0.2 0.357 123.8 38.8-104.9 5.5 5.2 -2.0 3.3 7 7 A b H <5S+ 0 0 39 -4,-1.8 -3,-0.2 -5,-0.3 -2,-0.1 0.587 124.2 34.9-124.0 -26.1 7.2 0.5 5.3 8 8 A T T < - 0 0 47 -2,-0.3 4,-3.5 13,-0.1 5,-0.5 -0.916 32.1-111.1-124.5 149.9 4.6 -4.2 -5.5 13 13 A L T 4 S+ 0 0 90 -2,-0.3 4,-0.2 1,-0.2 -1,-0.1 0.708 123.5 40.0 -54.5 -14.8 2.0 -2.5 -7.6 14 14 A Y T > S+ 0 0 154 2,-0.2 4,-1.6 3,-0.1 -1,-0.2 0.780 111.5 54.1-102.7 -33.6 -0.1 -5.7 -7.3 15 15 A Q T 4 S+ 0 0 97 1,-0.2 4,-0.4 2,-0.2 -2,-0.2 0.882 115.1 42.6 -64.8 -33.3 0.8 -6.4 -3.7 16 16 A L T >< S+ 0 0 4 -4,-3.5 3,-0.5 1,-0.2 -1,-0.2 0.770 108.8 58.7 -83.1 -23.9 -0.5 -2.9 -3.1 17 17 A E G >4 S+ 0 0 84 -5,-0.5 3,-1.0 1,-0.2 -2,-0.2 0.764 97.1 63.1 -74.1 -22.3 -3.4 -3.5 -5.4 18 18 A N G 3< S+ 0 0 118 -4,-1.6 -1,-0.2 1,-0.3 -2,-0.2 0.752 92.4 63.5 -74.7 -21.1 -4.3 -6.4 -3.1 19 19 A Y G < S+ 0 0 73 -3,-0.5 28,-1.5 -4,-0.4 29,-0.3 0.105 76.7 128.6 -89.8 26.7 -4.9 -4.0 -0.2 20 20 A c B < A 46 0A 26 -3,-1.0 26,-0.3 26,-0.2 25,-0.2 -0.575 360.0 360.0 -82.2 144.8 -7.8 -2.3 -2.1 21 21 A N 0 0 121 24,-2.1 26,-0.3 23,-1.4 24,-0.1 0.097 360.0 360.0 54.1 360.0 -11.1 -2.0 -0.3 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 129 0, 0.0 2,-0.1 0, 0.0 -11,-0.1 0.000 360.0 360.0 360.0 139.8 6.4 1.6 -8.6 24 2 B V - 0 0 105 -13,-0.1 2,-0.4 2,-0.1 -13,-0.2 -0.370 360.0 -59.3-138.0-141.1 9.7 -0.1 -8.1 25 3 B N S S+ 0 0 142 -2,-0.1 2,-0.2 -15,-0.1 -13,-0.1 -0.481 88.0 116.8-112.6 61.8 11.5 -2.1 -5.2 26 4 B Q - 0 0 128 -2,-0.4 -15,-1.1 -15,-0.3 -17,-0.1 -0.766 65.0-101.8-123.1 170.8 11.4 0.6 -2.5 27 5 B H - 0 0 96 -2,-0.2 2,-0.3 -17,-0.2 -20,-0.2 -0.223 37.1-146.0 -81.8 177.9 9.8 0.9 1.0 28 6 B L + 0 0 24 -22,-1.2 2,-0.2 -25,-0.2 -19,-0.1 -0.893 27.9 144.5-141.3 174.0 6.6 3.0 1.6 29 7 B b > + 0 0 51 -2,-0.3 3,-1.2 1,-0.2 2,-0.1 -0.616 59.0 6.8 157.6 140.9 4.9 5.2 4.2 30 8 B G T >> S- 0 0 48 1,-0.3 4,-1.6 2,-0.2 3,-0.9 -0.433 131.7 -10.1 70.7-142.9 2.7 8.3 4.3 31 9 B S H 3> S+ 0 0 86 1,-0.2 4,-4.3 2,-0.2 5,-0.4 0.824 130.9 70.6 -60.2 -27.2 1.6 9.5 0.9 32 10 B D H <> S+ 0 0 79 -3,-1.2 4,-0.9 1,-0.2 -1,-0.2 0.934 102.6 41.9 -56.9 -43.2 4.0 7.0 -0.7 33 11 B L H <> S+ 0 0 1 -3,-0.9 4,-2.8 2,-0.2 -1,-0.2 0.901 119.7 43.6 -72.8 -37.6 1.8 4.1 0.5 34 12 B V H X>S+ 0 0 42 -4,-1.6 4,-4.9 2,-0.2 5,-0.6 0.948 106.0 59.7 -73.4 -45.5 -1.4 6.0 -0.5 35 13 B E H X5S+ 0 0 106 -4,-4.3 4,-0.8 1,-0.2 -1,-0.2 0.853 115.4 38.9 -51.6 -29.0 -0.1 7.2 -3.8 36 14 B A H X5S+ 0 0 2 -4,-0.9 4,-2.2 -5,-0.4 5,-0.3 0.922 119.1 44.1 -86.3 -50.1 0.3 3.5 -4.6 37 15 B L H X>S+ 0 0 1 -4,-2.8 4,-3.2 1,-0.2 5,-0.6 0.926 115.7 49.9 -60.4 -42.0 -2.9 2.2 -2.9 38 16 B Y H <5S+ 0 0 136 -4,-4.9 -1,-0.2 1,-0.2 -3,-0.2 0.892 114.2 44.3 -65.4 -37.1 -4.8 5.1 -4.6 39 17 B L H <<5S+ 0 0 17 -4,-3.2 2,-1.5 -5,-0.3 3,-0.9 0.846 70.3 150.8-100.3 -71.1 -7.3 0.9 -5.9 42 20 B G G >