==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 12-SEP-07 2JV5 . COMPND 2 MOLECULE: RETICULON-4; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.LI,J.SONG . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5324.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 46 85.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 23 42.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 254 0, 0.0 3,-0.2 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 51.0 -28.4 5.9 -0.1 2 2 A I + 0 0 98 1,-0.2 2,-3.7 3,-0.2 4,-0.2 0.839 360.0 176.5 -36.4 -44.7 -25.2 7.9 -0.2 3 3 A Y S > S+ 0 0 182 1,-0.3 3,-1.0 2,-0.2 -1,-0.2 -0.271 71.1 61.8 68.6 -58.6 -27.5 10.8 -0.9 4 4 A K T 3 S+ 0 0 180 -2,-3.7 2,-0.7 1,-0.3 -1,-0.3 0.915 106.2 45.2 -61.7 -45.0 -24.6 13.2 -0.8 5 5 A G T 3 S+ 0 0 46 3,-0.0 -1,-0.3 4,-0.0 -2,-0.2 -0.387 88.8 143.5 -96.9 53.7 -23.0 11.4 -3.7 6 6 A V < - 0 0 43 -3,-1.0 4,-0.1 -2,-0.7 -2,-0.0 0.031 67.3 -94.0 -77.6-169.1 -26.2 11.2 -5.7 7 7 A I S > S+ 0 0 143 1,-0.2 3,-2.5 2,-0.2 4,-0.2 0.933 125.8 52.8 -74.6 -49.1 -26.5 11.5 -9.5 8 8 A Q G > S+ 0 0 135 1,-0.3 3,-4.1 2,-0.2 4,-0.2 0.763 87.9 83.7 -57.0 -25.8 -27.3 15.3 -9.4 9 9 A A G > S+ 0 0 26 1,-0.3 3,-2.2 2,-0.2 -1,-0.3 0.760 74.7 73.8 -49.0 -25.4 -24.1 15.5 -7.3 10 10 A I G X S+ 0 0 111 -3,-2.5 3,-3.5 1,-0.3 4,-0.3 0.793 72.7 82.1 -59.4 -28.5 -22.5 15.5 -10.8 11 11 A Q G X> + 0 0 133 -3,-4.1 3,-2.7 1,-0.3 4,-1.2 0.738 68.2 84.8 -48.2 -23.7 -23.8 19.1 -11.0 12 12 A K G <4>S+ 0 0 95 -3,-2.2 5,-0.6 1,-0.3 -1,-0.3 0.810 79.5 63.9 -49.1 -31.9 -20.7 19.9 -9.0 13 13 A S G X45S+ 0 0 90 -3,-3.5 3,-0.8 1,-0.3 -1,-0.3 0.820 99.4 51.8 -62.3 -31.9 -19.0 19.9 -12.4 14 14 A D T <45S+ 0 0 142 -3,-2.7 -1,-0.3 -4,-0.3 -2,-0.2 0.796 100.5 61.6 -73.8 -29.8 -21.2 22.9 -13.3 15 15 A E T 3<5S- 0 0 146 -4,-1.2 -1,-0.2 -3,-0.2 -2,-0.2 0.531 103.1-138.6 -72.8 -5.9 -20.1 24.6 -10.1 16 16 A G T < 5 - 0 0 53 -3,-0.8 -3,-0.2 -4,-0.3 -2,-0.1 0.938 21.4-129.6 43.5 68.8 -16.6 24.4 -11.6 17 17 A H < - 0 0 71 -5,-0.6 -1,-0.0 1,-0.1 -4,-0.0 0.036 10.0-131.8 -42.1 154.1 -14.9 23.5 -8.3 18 18 A P - 0 0 73 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.965 31.8-110.3 -75.0 -84.7 -11.9 25.6 -7.4 19 19 A F S >> S+ 0 0 170 0, 0.0 4,-1.3 0, 0.0 3,-0.8 0.051 103.5 64.8 179.7 -48.2 -9.0 23.4 -6.5 20 20 A R H 3> S+ 0 0 177 1,-0.3 4,-2.1 2,-0.2 5,-0.2 0.813 94.5 66.4 -64.5 -31.2 -8.3 23.6 -2.8 21 21 A A H 34 S+ 0 0 51 1,-0.2 4,-0.4 2,-0.2 -1,-0.3 0.842 102.8 47.4 -58.2 -34.5 -11.7 22.1 -2.1 22 22 A Y H X4 S+ 0 0 140 -3,-0.8 3,-0.9 2,-0.2 -1,-0.2 0.844 104.6 59.5 -75.0 -36.1 -10.4 18.9 -3.7 23 23 A L H >< S+ 0 0 76 -4,-1.3 3,-3.2 1,-0.3 -2,-0.2 0.924 97.8 58.9 -57.3 -47.3 -7.2 19.0 -1.7 24 24 A E T >X S+ 0 0 132 -4,-2.1 3,-3.0 1,-0.3 4,-0.5 0.772 86.2 79.2 -52.9 -27.0 -9.2 18.8 1.5 25 25 A S H X> S+ 0 0 56 -3,-0.9 4,-2.7 -4,-0.4 3,-0.6 0.704 72.5 81.0 -54.9 -19.2 -10.6 15.6 0.1 26 26 A E H <> S+ 0 0 96 -3,-3.2 4,-1.7 1,-0.3 -1,-0.3 0.783 87.5 54.8 -57.9 -28.0 -7.3 14.2 1.3 27 27 A V H <> S+ 0 0 94 -3,-3.0 4,-1.1 2,-0.2 -1,-0.3 0.831 108.2 48.2 -74.0 -34.0 -8.9 14.1 4.7 28 28 A A H XX S+ 0 0 53 -3,-0.6 4,-2.0 -4,-0.5 3,-0.5 0.938 111.8 47.7 -70.5 -49.3 -11.8 12.0 3.3 29 29 A I H 3X S+ 0 0 82 -4,-2.7 4,-4.7 1,-0.3 5,-0.2 0.879 105.6 61.0 -58.4 -39.6 -9.4 9.6 1.5 30 30 A S H 3X S+ 0 0 15 -4,-1.7 4,-1.5 -5,-0.3 -1,-0.3 0.876 106.3 46.3 -54.7 -40.4 -7.5 9.3 4.7 31 31 A E H < S+ 0 0 69 -4,-1.5 3,-1.0 1,-0.3 -1,-0.3 0.852 110.8 53.0 -62.4 -35.4 -7.9 3.1 6.7 35 35 A Q H >< S+ 0 0 112 -4,-1.1 3,-2.0 -3,-0.3 -1,-0.3 0.743 92.5 73.6 -70.9 -24.1 -11.1 1.5 5.6 36 36 A K H >X S+ 0 0 80 -4,-2.1 3,-4.0 -3,-0.5 4,-0.7 0.797 70.4 88.7 -58.8 -28.9 -9.2 -0.0 2.7 37 37 A Y G X< S+ 0 0 124 -3,-1.0 3,-0.8 -4,-0.6 4,-0.3 0.741 71.1 76.0 -40.3 -27.1 -7.7 -2.3 5.3 38 38 A S G X4 S+ 0 0 71 -3,-2.0 3,-1.7 1,-0.3 -1,-0.3 0.863 89.1 54.9 -54.6 -38.7 -10.7 -4.4 4.5 39 39 A N G X4 S+ 0 0 75 -3,-4.0 3,-2.3 1,-0.3 5,-0.3 0.814 91.7 72.0 -64.6 -30.8 -9.0 -5.4 1.3 40 40 A S G << S+ 0 0 35 -3,-0.8 3,-0.3 -4,-0.7 -1,-0.3 0.639 76.1 84.2 -59.1 -13.0 -6.1 -6.5 3.4 41 41 A A G < S+ 0 0 77 -3,-1.7 2,-2.0 -4,-0.3 -1,-0.3 0.844 74.8 70.3 -58.2 -34.7 -8.5 -9.3 4.4 42 42 A L S < S- 0 0 121 -3,-2.3 2,-1.5 -4,-0.2 -1,-0.3 -0.298 138.8 -75.9 -80.4 53.1 -7.3 -11.1 1.2 43 43 A G S S- 0 0 69 -2,-2.0 2,-0.2 -3,-0.3 -3,-0.1 -0.393 95.5 -49.9 87.4 -57.5 -3.9 -11.7 2.9 44 44 A H S S+ 0 0 93 -2,-1.5 -4,-0.1 -5,-0.3 -3,-0.1 -0.452 78.9 121.8 153.2 133.4 -2.8 -8.1 2.4 45 45 A V S > S+ 0 0 76 -2,-0.2 3,-0.5 -8,-0.1 4,-0.4 0.075 82.9 43.3-168.1 -60.6 -2.7 -5.5 -0.4 46 46 A N T >> S+ 0 0 44 1,-0.2 3,-1.7 -10,-0.2 4,-1.3 0.818 103.8 68.6 -71.4 -32.0 -4.6 -2.4 0.3 47 47 A C H 3> S+ 0 0 36 1,-0.3 4,-0.9 -10,-0.2 -1,-0.2 0.817 89.6 65.8 -55.3 -30.8 -3.2 -2.4 3.8 48 48 A T H <4 S+ 0 0 60 -3,-0.5 3,-0.4 1,-0.2 -1,-0.3 0.839 100.1 49.0 -59.9 -34.6 0.1 -1.6 2.1 49 49 A I H X> S+ 0 0 67 -3,-1.7 3,-2.9 -4,-0.4 4,-0.6 0.826 96.4 70.3 -73.4 -33.3 -1.4 1.7 1.1 50 50 A K H >X S+ 0 0 55 -4,-1.3 4,-1.7 1,-0.3 3,-0.6 0.815 83.1 73.5 -52.3 -31.8 -2.5 2.3 4.6 51 51 A E H 3< S+ 0 0 143 -4,-0.9 -1,-0.3 -3,-0.4 -2,-0.2 0.796 86.1 65.5 -52.6 -30.1 1.2 2.8 5.3 52 52 A L H <4 S+ 0 0 133 -3,-2.9 -1,-0.3 1,-0.2 -2,-0.2 0.956 101.0 46.0 -57.2 -54.3 0.8 6.1 3.5 53 53 A R H << 0 0 116 -3,-0.6 -1,-0.2 -4,-0.6 -2,-0.2 0.865 360.0 360.0 -56.5 -38.6 -1.5 7.4 6.3 54 54 A R < 0 0 264 -4,-1.7 -1,-0.2 0, 0.0 -2,-0.1 0.048 360.0 360.0 54.1 360.0 0.9 6.1 8.8