==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATION 02-SEP-01 1JW2 . COMPND 2 MOLECULE: HEMOLYSIN EXPRESSION MODULATING PROTEIN HHA; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR X.CHANG,A.YEE,A.SAVCHENKO,A.M.EDWARDS,C.H.ARROWSMITH, . 72 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5901.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 68.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 40 55.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 204 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -56.5 11.2 8.4 14.0 2 2 A S + 0 0 109 1,-0.2 2,-0.3 2,-0.0 5,-0.0 0.784 360.0 21.8 -87.9 -31.6 13.4 7.4 11.1 3 3 A E S > S- 0 0 124 1,-0.1 3,-2.4 0, 0.0 -1,-0.2 -0.984 77.5-117.1-138.8 149.0 11.7 9.7 8.6 4 4 A K T 3 S+ 0 0 191 -2,-0.3 -1,-0.1 1,-0.3 3,-0.1 0.936 119.8 47.8 -46.3 -57.9 9.6 12.9 8.8 5 5 A P T 3 S- 0 0 1 0, 0.0 -1,-0.3 0, 0.0 6,-0.1 0.496 114.3-134.4 -64.0 -1.3 6.6 11.1 7.2 6 6 A L < - 0 0 53 -3,-2.4 2,-0.2 4,-0.1 -2,-0.1 -0.243 34.2 -49.0 76.2-167.8 7.3 8.3 9.7 7 7 A T >> - 0 0 59 -3,-0.1 4,-1.7 1,-0.1 3,-0.7 -0.606 51.3-103.7-101.2 163.3 7.3 4.6 8.8 8 8 A K H 3> S+ 0 0 125 1,-0.3 4,-1.9 -2,-0.2 5,-0.1 0.779 125.3 52.5 -54.1 -27.2 4.8 2.5 6.9 9 9 A T H 3> S+ 0 0 75 2,-0.2 4,-3.0 3,-0.2 -1,-0.3 0.839 101.9 58.4 -78.2 -35.0 3.7 1.2 10.3 10 10 A D H <> S+ 0 0 29 -3,-0.7 4,-1.2 2,-0.2 -2,-0.2 0.947 117.7 31.0 -59.8 -50.4 3.2 4.7 11.8 11 11 A Y H X S+ 0 0 52 -4,-1.7 4,-2.1 2,-0.2 -2,-0.2 0.911 119.3 54.6 -74.5 -43.7 0.7 5.7 9.1 12 12 A L H X S+ 0 0 10 -4,-1.9 4,-1.9 -5,-0.3 -2,-0.2 0.901 106.3 52.7 -56.1 -43.7 -0.7 2.1 8.7 13 13 A M H X S+ 0 0 91 -4,-3.0 4,-0.5 1,-0.2 -1,-0.2 0.903 113.2 43.1 -59.7 -42.7 -1.3 1.9 12.4 14 14 A R H < S+ 0 0 179 -4,-1.2 4,-0.3 -5,-0.2 -1,-0.2 0.746 107.7 62.6 -74.8 -24.4 -3.3 5.2 12.3 15 15 A L H >< S+ 0 0 10 -4,-2.1 3,-1.4 1,-0.2 -2,-0.2 0.923 101.6 48.5 -66.7 -45.8 -5.0 4.0 9.1 16 16 A R H 3< S+ 0 0 124 -4,-1.9 -1,-0.2 1,-0.3 -2,-0.2 0.689 90.1 84.7 -68.1 -17.9 -6.7 1.0 10.7 17 17 A R T 3< S+ 0 0 208 -4,-0.5 -1,-0.3 -5,-0.2 -2,-0.2 0.739 71.2 104.5 -56.3 -22.5 -7.8 3.4 13.5 18 18 A C S < S- 0 0 48 -3,-1.4 3,-0.1 -4,-0.3 -3,-0.0 0.144 76.0-130.2 -50.7 176.0 -10.8 4.2 11.2 19 19 A Q S S- 0 0 166 1,-0.4 2,-0.3 2,-0.0 -1,-0.1 0.745 79.7 -1.4-102.4 -34.1 -14.2 2.8 11.9 20 20 A T > - 0 0 53 1,-0.1 4,-2.1 0, 0.0 -1,-0.4 -0.969 60.9-119.3-153.0 164.6 -15.1 1.4 8.5 21 21 A I H > S+ 0 0 65 -2,-0.3 4,-3.6 2,-0.2 5,-0.2 0.888 109.3 58.6 -74.5 -41.6 -13.7 1.1 4.9 22 22 A D H > S+ 0 0 138 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.922 118.4 31.1 -54.2 -48.2 -16.5 3.0 3.3 23 23 A T H > S+ 0 0 79 2,-0.2 4,-1.1 1,-0.2 3,-0.4 0.886 119.2 54.3 -78.1 -40.9 -15.8 6.1 5.4 24 24 A L H >X S+ 0 0 16 -4,-2.1 4,-1.4 1,-0.2 3,-0.5 0.876 102.0 59.5 -60.3 -38.0 -12.1 5.4 5.7 25 25 A E H 3X S+ 0 0 119 -4,-3.6 4,-1.2 1,-0.2 3,-0.3 0.885 98.7 58.5 -58.1 -39.1 -11.9 5.3 1.9 26 26 A R H 3X S+ 0 0 186 -4,-0.8 4,-1.4 -3,-0.4 -1,-0.2 0.861 105.5 49.1 -59.1 -37.1 -13.2 8.8 1.8 27 27 A V H - 0 0 79 1,-0.0 4,-3.0 0, 0.0 5,-0.2 -0.586 40.3 -85.4-118.7-178.2 2.9 15.4 -0.0 37 37 A D H > S+ 0 0 142 1,-0.2 4,-1.2 -2,-0.2 5,-0.1 0.758 126.1 58.1 -59.9 -25.2 4.5 12.7 -2.1 38 38 A N H > S+ 0 0 74 2,-0.2 4,-0.5 1,-0.1 -1,-0.2 0.937 115.1 30.8 -73.2 -48.1 6.8 12.1 0.9 39 39 A E H >> S+ 0 0 44 1,-0.2 4,-1.5 2,-0.2 3,-0.6 0.808 114.3 63.8 -79.6 -29.7 4.1 11.3 3.4 40 40 A L H 3X S+ 0 0 34 -4,-3.0 4,-3.9 1,-0.2 5,-0.3 0.860 92.1 63.3 -61.3 -36.2 1.8 9.8 0.7 41 41 A A H 3X S+ 0 0 51 -4,-1.2 4,-1.9 1,-0.3 -1,-0.2 0.889 108.3 42.8 -55.9 -37.4 4.3 7.1 0.1 42 42 A V H X S+ 0 0 1 -4,-3.3 4,-1.9 1,-0.2 3,-0.8 0.944 107.4 44.7 -61.1 -51.1 -4.5 -6.8 1.4 53 53 A E H 3< S+ 0 0 8 -4,-1.9 6,-0.5 1,-0.2 -1,-0.2 0.816 104.4 65.8 -64.4 -29.6 -5.9 -8.2 4.7 54 54 A L H 3< S+ 0 0 79 -4,-1.9 3,-0.4 1,-0.2 -1,-0.2 0.860 108.1 39.5 -59.9 -35.3 -9.3 -7.1 3.6 55 55 A T H << S+ 0 0 51 -4,-1.1 -1,-0.2 -3,-0.8 -2,-0.2 0.828 121.1 43.2 -82.1 -34.8 -9.1 -9.6 0.8 56 56 A M S < S- 0 0 50 -4,-1.9 2,-2.2 3,-0.3 -2,-0.2 0.105 112.1-120.5 -96.5 20.1 -7.4 -12.3 2.9 57 57 A N S S- 0 0 135 -3,-0.4 -1,-0.1 1,-0.2 -4,-0.1 -0.474 88.7 -12.3 77.4 -72.7 -9.8 -11.5 5.8 58 58 A K S S+ 0 0 134 -2,-2.2 2,-0.5 -6,-0.1 -1,-0.2 -0.024 104.1 115.1-151.2 34.6 -7.1 -10.5 8.3 59 59 A L + 0 0 52 -6,-0.5 2,-0.3 -7,-0.2 -3,-0.3 -0.942 32.0 156.7-117.2 118.0 -3.8 -11.6 6.7 60 60 A Y + 0 0 92 -2,-0.5 -11,-0.1 -7,-0.1 -10,-0.1 -0.913 52.0 38.1-134.9 161.1 -1.2 -9.0 5.7 61 61 A D S S+ 0 0 111 -2,-0.3 -1,-0.1 -12,-0.1 -12,-0.0 0.041 111.8 62.2 88.1 -25.3 2.6 -8.8 5.2 62 62 A K + 0 0 151 2,-0.0 -2,-0.1 0, 0.0 -1,-0.1 0.102 68.1 144.6-116.1 19.5 2.5 -12.3 3.6 63 63 A I - 0 0 29 1,-0.1 -3,-0.1 4,-0.1 -10,-0.0 -0.444 38.9-147.1 -63.4 119.4 0.2 -11.4 0.7 64 64 A P > - 0 0 64 0, 0.0 4,-1.0 0, 0.0 5,-0.1 0.103 25.2-100.4 -73.9-167.8 1.3 -13.4 -2.4 65 65 A S H > S+ 0 0 81 2,-0.2 4,-1.9 3,-0.1 5,-0.1 0.736 117.5 56.2 -88.7 -26.5 1.2 -12.4 -6.0 66 66 A S H > S+ 0 0 91 2,-0.2 4,-1.0 1,-0.1 -1,-0.1 0.926 109.3 44.5 -71.3 -46.4 -2.0 -14.4 -6.8 67 67 A V H >> S+ 0 0 28 2,-0.2 4,-1.8 1,-0.2 3,-0.6 0.939 116.2 46.3 -63.6 -48.6 -4.1 -12.7 -4.2 68 68 A W H 3< S+ 0 0 61 -4,-1.0 -1,-0.2 1,-0.2 -2,-0.2 0.916 106.8 58.2 -60.6 -44.4 -2.8 -9.2 -5.0 69 69 A K H 3< S+ 0 0 151 -4,-1.9 -1,-0.2 1,-0.2 -2,-0.2 0.788 107.0 51.0 -56.5 -27.8 -3.3 -9.8 -8.7 70 70 A F H << S+ 0 0 182 -4,-1.0 2,-0.4 -3,-0.6 -1,-0.2 0.938 108.5 51.8 -75.9 -50.2 -6.9 -10.5 -7.9 71 71 A I < 0 0 48 -4,-1.8 -1,-0.1 1,-0.1 -16,-0.0 -0.773 360.0 360.0 -94.3 131.3 -7.6 -7.3 -5.9 72 72 A R 0 0 237 -2,-0.4 -1,-0.1 -3,-0.0 -2,-0.1 0.628 360.0 360.0-114.8 360.0 -6.7 -3.9 -7.4