==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 05-SEP-01 1JWW . COMPND 2 MOLECULE: POTENTIAL COPPER-TRANSPORTING ATPASE; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR L.BANCI,I.BERTINI,S.CIOFI-BAFFONI,M.D'ONOFRIO,L.GONNELLI, . 80 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5426.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 66.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 16 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 175 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -92.4 -8.9 12.0 9.8 2 2 A T - 0 0 47 46,-0.1 2,-0.3 47,-0.0 46,-0.3 -0.882 360.0-134.4-130.6 154.5 -7.5 9.8 7.1 3 3 A E E -A 47 0A 117 44,-3.0 44,-1.9 -2,-0.3 2,-0.9 -0.869 14.3-132.6-119.2 139.5 -6.5 10.4 3.4 4 4 A K E +A 46 0A 92 -2,-0.3 70,-2.0 42,-0.2 42,-0.2 -0.785 36.6 172.9-104.9 88.8 -7.4 8.0 0.5 5 5 A A E -A 45 0A 12 40,-2.6 40,-2.9 -2,-0.9 2,-0.3 -0.650 19.6-146.8-104.6 152.4 -4.2 7.5 -1.5 6 6 A E E -A 44 0A 17 38,-0.2 65,-3.0 -2,-0.2 66,-0.8 -0.935 9.2-168.7-123.5 148.9 -3.3 5.2 -4.5 7 7 A F E -AB 43 70A 0 36,-3.0 36,-2.7 -2,-0.3 2,-0.3 -0.974 17.7-132.5-138.7 142.3 -0.1 3.5 -5.5 8 8 A D E -AB 42 69A 68 61,-2.7 61,-1.1 -2,-0.3 2,-0.5 -0.789 24.2-134.9-108.9 137.4 0.9 1.7 -8.7 9 9 A I E - B 0 68A 15 32,-1.5 2,-0.6 -2,-0.3 59,-0.2 -0.849 18.7-174.1-110.2 124.9 2.6 -1.7 -8.4 10 10 A E E + B 0 67A 154 57,-2.2 57,-2.2 -2,-0.5 2,-0.1 -0.919 68.9 26.5-117.6 102.7 5.7 -3.0 -10.3 11 11 A G S S+ 0 0 66 -2,-0.6 2,-0.2 55,-0.2 57,-0.0 -0.615 105.5 25.0 160.1 -84.8 6.4 -6.7 -9.6 12 12 A M - 0 0 39 -2,-0.1 2,-0.1 2,-0.1 -1,-0.1 -0.696 39.2-175.7-107.1 160.9 3.7 -9.1 -8.5 13 13 A T + 0 0 65 -2,-0.2 2,-0.3 25,-0.1 25,-0.1 -0.660 39.9 121.0-153.0 86.2 -0.1 -9.3 -9.0 14 14 A C > - 0 0 69 -2,-0.1 4,-3.2 1,-0.1 5,-0.3 -0.964 62.0-121.9-152.5 138.3 -1.6 -12.3 -7.1 15 15 A A H > S+ 0 0 53 -2,-0.3 4,-2.2 23,-0.3 -1,-0.1 0.847 107.3 38.5 -48.7 -53.4 -4.2 -12.5 -4.3 16 16 A A H > S+ 0 0 78 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.908 119.6 45.8 -76.6 -40.8 -2.2 -14.2 -1.5 17 17 A C H >> S+ 0 0 73 1,-0.2 3,-1.7 2,-0.2 4,-0.6 0.972 115.3 48.0 -61.7 -52.4 1.1 -12.4 -2.2 18 18 A A H >X S+ 0 0 2 -4,-3.2 3,-1.5 1,-0.3 4,-0.8 0.875 99.3 70.1 -52.3 -40.0 -0.8 -9.1 -2.4 19 19 A N H 3X S+ 0 0 74 -4,-2.2 4,-1.1 -5,-0.3 3,-0.3 0.805 88.1 63.5 -51.7 -31.2 -2.6 -10.1 0.8 20 20 A R H < S+ 0 0 0 -4,-2.6 3,-2.6 -5,-0.2 -2,-0.2 0.847 107.8 62.2 -84.9 -42.6 0.4 -1.6 5.5 26 26 A N H 3< S+ 0 0 88 -4,-2.9 -2,-0.2 -5,-0.3 5,-0.2 0.715 89.1 75.5 -60.3 -18.6 -1.8 -2.3 8.6 27 27 A K T 3< S+ 0 0 147 -4,-1.6 -1,-0.3 -5,-0.1 -2,-0.2 0.845 73.8 95.1 -51.2 -41.0 1.6 -2.2 10.4 28 28 A I S X S- 0 0 4 -3,-2.6 3,-0.7 -4,-0.2 24,-0.1 -0.382 72.9-147.3 -54.5 129.4 1.4 1.6 10.0 29 29 A E T 3 S+ 0 0 151 1,-0.2 2,-1.5 -2,-0.1 -1,-0.1 0.948 93.5 57.2 -66.9 -46.2 -0.1 3.0 13.3 30 30 A G T 3 S+ 0 0 3 18,-0.1 18,-3.2 17,-0.0 2,-0.3 -0.134 86.4 122.3 -83.2 43.9 -1.9 5.9 11.6 31 31 A V E < +C 47 0A 36 -2,-1.5 16,-0.3 -3,-0.7 3,-0.1 -0.712 33.4 171.2-103.8 152.5 -3.8 3.6 9.3 32 32 A A E S- 0 0 42 14,-2.9 2,-0.3 1,-0.5 15,-0.2 0.579 70.2 -10.7-117.7 -59.7 -7.6 3.1 8.8 33 33 A N E -C 46 0A 85 13,-1.9 13,-3.1 2,-0.0 -1,-0.5 -0.937 41.4-172.6-140.1 160.1 -8.0 0.8 5.8 34 34 A A + 0 0 9 -2,-0.3 2,-2.1 11,-0.2 11,-0.2 -0.365 12.8 172.2-149.2 63.7 -5.9 -0.6 3.0 35 35 A P - 0 0 68 0, 0.0 10,-0.1 0, 0.0 -2,-0.0 -0.485 21.5-173.5 -78.1 75.6 -8.2 -2.4 0.5 36 36 A V - 0 0 4 -2,-2.1 2,-0.4 7,-0.1 7,-0.2 -0.312 22.4-116.5 -71.0 157.4 -5.5 -3.1 -2.1 37 37 A N - 0 0 59 5,-2.6 5,-0.4 1,-0.1 4,-0.2 -0.799 17.6-164.0-100.9 138.1 -6.4 -4.6 -5.5 38 38 A F S S+ 0 0 115 -2,-0.4 -23,-0.3 3,-0.1 -25,-0.1 -0.450 86.0 22.7-121.0 53.7 -5.0 -8.0 -6.5 39 39 A A S S+ 0 0 70 -2,-0.2 -1,-0.1 -25,-0.1 -2,-0.0 0.045 113.1 62.8-176.3 -41.3 -5.5 -8.1 -10.3 40 40 A L S S- 0 0 121 2,-0.2 -2,-0.1 1,-0.0 3,-0.1 0.571 100.9-124.5 -82.2 -15.2 -5.7 -4.4 -11.3 41 41 A E S S+ 0 0 92 1,-0.2 -32,-1.5 -4,-0.2 2,-0.3 0.865 70.1 117.2 72.9 44.1 -2.1 -3.7 -10.1 42 42 A T E -A 8 0A 22 -5,-0.4 -5,-2.6 -34,-0.2 2,-0.4 -0.995 50.8-152.9-140.9 131.7 -3.0 -0.9 -7.8 43 43 A V E -A 7 0A 3 -36,-2.7 -36,-3.0 -2,-0.3 2,-0.4 -0.859 13.2-163.2-100.0 141.9 -2.7 -0.5 -4.0 44 44 A T E -A 6 0A 20 -2,-0.4 2,-0.4 -38,-0.2 -38,-0.2 -0.998 7.0-169.0-130.1 124.1 -5.2 1.8 -2.3 45 45 A V E -A 5 0A 0 -40,-2.9 -40,-2.6 -2,-0.4 2,-0.7 -0.980 19.5-163.1-126.6 134.5 -4.5 3.1 1.3 46 46 A E E +AC 4 33A 45 -13,-3.1 -14,-2.9 -2,-0.4 -13,-1.9 -0.915 44.3 133.3-109.0 94.2 -6.6 5.0 3.8 47 47 A Y E -AC 3 31A 16 -44,-1.9 -44,-3.0 -2,-0.7 -16,-0.2 -0.921 54.5-110.3-140.1 163.4 -4.1 6.4 6.3 48 48 A N >> - 0 0 21 -18,-3.2 2,-1.8 -2,-0.3 4,-0.9 -0.833 18.5-134.6 -95.9 132.5 -3.3 9.7 8.0 49 49 A P T 34 S+ 0 0 70 0, 0.0 4,-0.1 0, 0.0 -47,-0.0 -0.337 92.9 78.6 -78.8 56.4 -0.2 11.7 7.1 50 50 A K T 34 S+ 0 0 158 -2,-1.8 3,-0.1 -20,-0.2 -3,-0.0 0.595 102.2 22.5-118.5 -45.7 0.5 12.2 10.9 51 51 A E T <4 S+ 0 0 105 -3,-0.8 2,-0.2 -21,-0.1 -22,-0.1 0.868 131.3 6.0 -99.1 -46.3 2.1 8.9 12.0 52 52 A A < - 0 0 15 -4,-0.9 2,-0.3 -22,-0.2 3,-0.0 -0.575 68.1-145.1-122.9-171.3 3.5 7.4 8.8 53 53 A S > - 0 0 52 -2,-0.2 4,-2.0 -4,-0.1 3,-0.5 -0.951 36.5 -92.2-149.5 170.8 3.8 8.5 5.1 54 54 A V H > S+ 0 0 47 -2,-0.3 4,-2.6 1,-0.2 5,-0.2 0.871 124.6 56.6 -49.4 -42.1 3.7 7.3 1.5 55 55 A S H > S+ 0 0 76 2,-0.2 4,-1.6 1,-0.2 -1,-0.2 0.877 106.6 48.7 -61.2 -42.4 7.5 6.7 1.8 56 56 A D H >> S+ 0 0 80 -3,-0.5 4,-2.2 2,-0.2 3,-0.6 0.980 114.7 41.7 -62.3 -57.4 7.1 4.4 4.8 57 57 A L H 3X S+ 0 0 0 -4,-2.0 4,-2.3 1,-0.3 -2,-0.2 0.921 111.6 57.1 -65.8 -40.9 4.4 2.2 3.4 58 58 A K H 3X S+ 0 0 46 -4,-2.6 4,-3.1 -5,-0.3 -1,-0.3 0.882 105.8 51.5 -44.3 -47.2 6.3 2.2 0.0 59 59 A E H S+ 0 0 0 -4,-2.3 4,-1.1 2,-0.2 5,-0.5 0.935 113.1 51.6 -65.7 -46.2 6.2 -2.9 -0.1 62 62 A D H ><5S+ 0 0 51 -4,-3.1 3,-1.0 1,-0.2 -2,-0.2 0.926 108.3 54.1 -56.5 -38.7 9.8 -2.5 -1.4 63 63 A K H 3<5S+ 0 0 152 -4,-3.3 -1,-0.2 1,-0.3 -2,-0.2 0.831 99.3 60.2 -66.7 -35.5 10.9 -4.7 1.5 64 64 A L H 3<5S- 0 0 51 -4,-1.4 -1,-0.3 -3,-0.4 -2,-0.2 0.799 125.9-107.3 -58.6 -30.1 8.4 -7.3 0.3 65 65 A G T <<5S+ 0 0 51 -4,-1.1 2,-0.2 -3,-1.0 -3,-0.1 -0.183 89.9 85.8 137.4 -39.8 10.5 -7.3 -2.9 66 66 A Y S