==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 16-OCT-07 2JWM . COMPND 2 MOLECULE: KALATA-B7; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR K.D.NADEZHDIN,Z.O.SHENKAREV,L.SKJELDAL,A.S.ARSENIEV . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2299.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 55.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 20.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 27 0, 0.0 2,-0.4 0, 0.0 28,-0.1 0.000 360.0 360.0 360.0 -46.6 2.2 3.4 3.8 2 2 A G + 0 0 64 20,-0.5 21,-0.1 1,-0.3 27,-0.0 -0.166 360.0 103.2 88.3 -40.0 -0.5 2.7 6.4 3 3 A E - 0 0 34 -2,-0.4 19,-1.9 18,-0.1 2,-0.3 -0.205 63.2-139.0 -70.5 165.6 -3.2 2.7 3.7 4 4 A T B -A 21 0A 72 17,-0.2 17,-0.3 -3,-0.1 3,-0.2 -0.946 13.8-150.7-130.2 150.3 -4.7 -0.4 2.3 5 5 A b > + 0 0 0 15,-2.4 3,-0.6 -2,-0.3 14,-0.2 -0.313 36.8 152.5-112.0 45.6 -5.7 -1.5 -1.1 6 6 A T T 3 S+ 0 0 83 1,-0.3 -1,-0.2 14,-0.2 15,-0.1 0.752 83.4 43.2 -45.8 -26.1 -8.5 -3.8 0.0 7 7 A L T 3 S- 0 0 155 2,-0.3 -1,-0.3 -3,-0.2 -2,-0.1 0.771 129.3 -99.4 -89.9 -34.4 -9.9 -3.0 -3.4 8 8 A G S < S+ 0 0 35 -3,-0.6 2,-0.3 1,-0.5 9,-0.2 0.404 91.2 92.9 126.9 8.7 -6.6 -3.4 -5.2 9 9 A T - 0 0 92 -5,-0.1 -1,-0.5 7,-0.1 2,-0.4 -0.839 59.6-139.7-126.2 163.2 -5.6 0.3 -5.5 10 10 A c - 0 0 28 -2,-0.3 -5,-0.1 5,-0.1 7,-0.1 -0.953 6.9-158.8-125.4 144.2 -3.5 2.7 -3.4 11 11 A Y S S+ 0 0 203 -2,-0.4 2,-0.7 -7,-0.1 -1,-0.1 0.652 79.9 74.8 -91.9 -20.1 -4.2 6.3 -2.7 12 12 A T S > S- 0 0 70 3,-0.0 3,-1.4 4,-0.0 -1,-0.1 -0.864 82.5-134.2-100.3 113.9 -0.6 7.1 -1.8 13 13 A Q T 3 S+ 0 0 196 -2,-0.7 3,-0.1 1,-0.2 -2,-0.1 -0.271 88.8 34.4 -63.5 149.8 1.6 7.3 -4.9 14 14 A G T 3 S+ 0 0 52 1,-0.3 2,-0.4 10,-0.0 -1,-0.2 0.170 96.9 105.2 90.0 -16.5 5.0 5.4 -4.7 15 15 A a < - 0 0 16 -3,-1.4 -1,-0.3 9,-0.1 2,-0.3 -0.833 67.0-135.7-100.5 134.4 3.3 2.7 -2.6 16 16 A T E -B 23 0A 84 7,-3.1 7,-1.9 -2,-0.4 2,-1.5 -0.628 22.2-111.4 -89.5 147.2 2.5 -0.6 -4.2 17 17 A b E +B 22 0A 52 -2,-0.3 2,-0.9 5,-0.2 5,-0.2 -0.637 41.8 169.5 -80.1 91.2 -0.8 -2.4 -3.7 18 18 A S E > -B 21 0A 43 -2,-1.5 3,-1.2 3,-0.9 -1,-0.1 -0.601 49.7-100.7 -99.0 68.8 0.4 -5.4 -1.6 19 19 A W T 3 S+ 0 0 166 -2,-0.9 -13,-0.1 1,-0.4 2,-0.1 0.123 100.6 12.7 -34.8 145.3 -3.1 -6.4 -0.7 20 20 A P T 3 S+ 0 0 54 0, 0.0 -15,-2.4 0, 0.0 -1,-0.4 -0.912 135.9 35.1 -75.0 -16.3 -4.5 -6.0 1.6 21 21 A I E < S-AB 4 18A 58 -3,-1.2 -3,-0.9 -17,-0.3 2,-0.5 -0.446 76.5-121.4 -93.6 161.0 -1.9 -3.5 2.7 22 22 A c E - B 0 17A 0 -19,-1.9 -20,-0.5 -5,-0.2 2,-0.3 -0.912 31.3-169.1-102.0 126.9 0.1 -1.0 0.6 23 23 A K E - B 0 16A 73 -7,-1.9 -7,-3.1 -2,-0.5 2,-0.5 -0.778 15.6-142.4-113.8 158.6 3.8 -1.5 0.9 24 24 A R S S- 0 0 139 3,-2.6 -9,-0.1 -2,-0.3 5,-0.1 -0.910 81.9 -29.6-126.3 103.0 6.7 0.8 -0.3 25 25 A N S S- 0 0 146 -2,-0.5 -1,-0.1 1,-0.2 -10,-0.1 0.775 132.2 -42.4 62.4 26.2 9.7 -1.0 -1.7 26 26 A G S S+ 0 0 58 1,-0.2 -1,-0.2 -10,-0.1 -3,-0.0 0.862 118.4 112.8 86.4 42.2 8.8 -3.8 0.6 27 27 A L - 0 0 102 0, 0.0 -3,-2.6 0, 0.0 2,-2.6 -0.928 64.4-140.2-150.1 120.1 8.0 -1.7 3.6 28 28 A P 0 0 90 0, 0.0 -5,-0.1 0, 0.0 -26,-0.1 -0.273 360.0 360.0 -75.0 54.1 4.5 -1.2 5.2 29 29 A V 0 0 107 -2,-2.6 -6,-0.1 -28,-0.1 -14,-0.0 -0.029 360.0 360.0-103.1 360.0 5.3 2.4 5.8