==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 06-NOV-07 2JX4 . COMPND 2 MOLECULE: VASOPRESSIN V2 RECEPTOR; . SOURCE 2 SYNTHETIC: YES; . AUTHOR G.BELLOT,H.DEMENE . 51 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4289.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 80.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 15.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 58.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 16 0, 0.0 47,-0.1 0, 0.0 48,-0.0 0.000 360.0 360.0 360.0 -79.1 -15.4 -0.0 -2.8 2 225 A X >> - 0 0 103 45,-0.1 3,-4.2 46,-0.0 4,-1.6 0.097 360.0-165.2 160.6 64.6 -12.5 2.0 -4.1 3 226 A V H 3> S+ 0 0 74 1,-0.3 4,-0.6 2,-0.2 5,-0.0 0.714 92.2 60.1 -37.6 -26.7 -10.5 0.1 -6.7 4 227 A L H 34 S+ 0 0 85 2,-0.2 4,-0.5 1,-0.2 -1,-0.3 0.761 102.9 48.0 -78.0 -27.7 -7.9 2.7 -6.2 5 228 A I H <> S+ 0 0 15 -3,-4.2 4,-2.9 2,-0.3 5,-0.3 0.742 102.6 62.1 -79.9 -28.6 -7.5 1.7 -2.6 6 229 A F H X S+ 0 0 88 -4,-1.6 4,-1.0 1,-0.3 -2,-0.2 0.796 105.0 48.9 -61.4 -27.8 -7.4 -1.8 -3.9 7 230 A R H < S+ 0 0 147 -4,-0.6 4,-0.5 -5,-0.3 -2,-0.3 0.738 106.3 56.4 -78.6 -29.0 -4.3 -0.3 -5.5 8 231 A E H > S+ 0 0 61 -4,-0.5 4,-0.9 2,-0.3 -2,-0.2 0.908 109.3 43.1 -69.3 -45.3 -3.3 1.1 -2.2 9 232 A I H X S+ 0 0 57 -4,-2.9 4,-1.5 1,-0.3 3,-0.5 0.849 114.3 52.2 -67.0 -32.8 -3.4 -2.3 -0.5 10 233 A H H X S+ 0 0 123 -4,-1.0 4,-1.3 -5,-0.3 -1,-0.3 0.714 103.5 59.9 -71.7 -20.2 -1.7 -3.4 -3.6 11 234 A A H 4 S+ 0 0 21 -4,-0.5 -1,-0.2 -6,-0.2 -2,-0.2 0.691 105.9 45.1 -80.3 -26.2 0.7 -0.6 -2.9 12 235 A S H X S+ 0 0 44 -4,-0.9 4,-1.3 -3,-0.5 -2,-0.2 0.738 105.9 62.2 -85.1 -29.3 1.7 -2.1 0.4 13 236 A L H < S+ 0 0 107 -4,-1.5 5,-0.3 1,-0.2 -2,-0.2 0.892 100.0 54.8 -61.2 -41.6 2.0 -5.5 -1.2 14 237 A V T X S+ 0 0 63 -4,-1.3 4,-2.0 1,-0.2 5,-0.4 0.949 106.6 47.8 -59.8 -53.6 4.8 -4.2 -3.4 15 238 A P H >>S+ 0 0 15 0, 0.0 4,-1.1 0, 0.0 5,-0.6 0.774 98.6 74.5 -60.3 -27.0 7.1 -2.9 -0.6 16 239 A G H X5S+ 0 0 54 -4,-1.3 4,-0.6 1,-0.2 -2,-0.2 0.966 118.9 5.5 -52.4 -66.4 6.7 -6.1 1.3 17 240 A P H 45S+ 0 0 88 0, 0.0 -1,-0.2 0, 0.0 -3,-0.1 0.777 133.5 53.7 -89.6 -29.6 9.0 -8.3 -0.8 18 241 A S H >X>S+ 0 0 60 -4,-2.0 3,-1.4 -5,-0.3 5,-0.9 0.865 102.3 56.0 -74.4 -38.5 10.3 -5.7 -3.2 19 242 A E H ><>S+ 0 0 82 -4,-1.1 5,-1.3 -5,-0.4 3,-1.3 0.938 103.5 54.0 -59.1 -48.6 11.6 -3.3 -0.5 20 243 A R T 3< + 0 0 24 3,-0.0 4,-1.6 -3,-0.0 5,-0.2 0.816 28.8 156.0 101.8 42.4 12.6 5.0 -2.1 28 251 A R T 4 S+ 0 0 243 1,-0.2 -2,-0.1 2,-0.2 -1,-0.0 -0.068 77.2 46.1 -88.9 34.4 11.7 8.3 -0.3 29 252 A R T 4 S+ 0 0 215 3,-0.0 -1,-0.2 0, 0.0 -3,-0.0 0.466 117.1 35.5-140.3 -34.4 8.8 8.8 -2.7 30 253 A T T > S+ 0 0 52 2,-0.1 4,-1.3 3,-0.1 -2,-0.2 0.703 111.1 61.3 -96.1 -29.1 7.1 5.5 -3.0 31 254 A G H X S+ 0 0 14 -4,-1.6 4,-1.4 2,-0.2 -3,-0.1 0.897 101.5 53.8 -64.0 -41.3 7.6 4.5 0.6 32 255 A S H >> S+ 0 0 85 -5,-0.2 4,-1.6 1,-0.2 3,-0.8 0.955 109.2 45.0 -59.3 -56.0 5.6 7.4 1.9 33 256 A P H 3> S+ 0 0 60 0, 0.0 4,-1.8 0, 0.0 -1,-0.2 0.793 107.1 62.7 -59.8 -28.4 2.5 6.7 -0.2 34 257 A S H 3X S+ 0 0 7 -4,-1.3 4,-1.0 2,-0.2 -2,-0.2 0.882 100.0 52.4 -63.3 -39.6 2.8 3.1 0.9 35 258 A E H XX S+ 0 0 135 -4,-1.4 4,-1.3 -3,-0.8 3,-1.1 0.947 111.2 45.4 -60.5 -49.6 2.3 4.2 4.5 36 259 A G H 3X S+ 0 0 26 -4,-1.6 4,-1.7 1,-0.3 -1,-0.2 0.813 104.4 64.3 -62.9 -29.8 -0.8 6.0 3.5 37 260 A A H 3X S+ 0 0 0 -4,-1.8 4,-0.7 1,-0.2 -1,-0.3 0.790 98.0 55.4 -62.6 -29.3 -1.7 3.0 1.6 38 261 A H H X S+ 0 0 57 -4,-1.3 4,-0.9 2,-0.2 3,-0.7 0.913 112.5 50.2 -71.6 -43.6 -8.2 0.2 6.8 43 266 A X H >X S+ 0 0 80 -4,-1.9 4,-2.0 1,-0.3 3,-0.8 0.862 105.1 61.4 -61.3 -30.5 -10.4 2.4 4.6 44 267 A A H 3X S+ 0 0 2 -4,-1.7 4,-2.6 1,-0.3 5,-0.3 0.835 93.5 60.5 -63.1 -35.7 -10.4 -0.6 2.4 45 268 A K H