==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 11-SEP-01 1JY6 . COMPND 2 MOLECULE: B4DIMER; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.VENKATRAMAN,G.A.NAGANA GOWDA,P.BALARAM . 48 2 1 0 1 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4298.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 72.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 18 37.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 4.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 13 27.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 12 A T 0 0 166 0, 0.0 2,-0.3 0, 0.0 10,-0.1 0.000 360.0 360.0 360.0 66.0 19.5 -1.3 -24.7 2 13 A A - 0 0 46 8,-0.3 8,-2.9 9,-0.0 2,-0.1 -0.953 360.0 -61.9-166.5 177.0 19.5 0.9 -21.6 3 14 A L S S- 0 0 87 -2,-0.3 2,-0.9 6,-0.2 7,-0.3 -0.433 71.7 -80.7 -73.3 147.1 17.5 3.6 -19.7 4 15 A N + 0 0 51 5,-0.5 2,-0.6 -2,-0.1 -1,-0.2 -0.265 64.2 172.0 -50.3 93.0 17.0 6.9 -21.4 5 16 A T - 0 0 94 -2,-0.9 2,-1.8 -3,-0.1 3,-0.2 -0.896 61.9 -53.5-115.8 101.1 20.4 8.3 -20.6 6 17 A X S S+ 0 0 124 -2,-0.6 3,-0.1 1,-0.2 -2,-0.1 -0.551 131.8 40.4 75.0 -86.1 21.1 11.6 -22.3 7 18 A A S S- 0 0 91 -2,-1.8 2,-0.5 1,-0.1 -1,-0.2 0.710 121.6 -54.3 -61.7-125.8 20.4 10.6 -25.9 8 19 A V S S+ 0 0 107 -3,-0.2 2,-0.2 16,-0.1 -1,-0.1 -0.956 73.7 140.1-129.4 111.8 17.4 8.3 -26.5 9 20 A Q - 0 0 57 -2,-0.5 15,-0.9 -3,-0.1 -5,-0.5 -0.803 34.4-141.8-139.0 179.1 17.2 5.0 -24.5 10 21 A K - 0 0 37 -8,-2.9 2,-0.3 -7,-0.3 -8,-0.3 -0.951 17.6-128.8-152.4 127.6 14.7 2.8 -22.7 11 22 A W - 0 0 120 -2,-0.3 11,-1.4 -10,-0.1 2,-0.5 -0.613 23.3-157.4 -78.3 131.4 15.0 0.8 -19.5 12 23 A H E +A 21 0A 118 -2,-0.3 2,-0.4 9,-0.2 9,-0.2 -0.957 19.5 164.5-116.1 120.6 13.9 -2.8 -20.0 13 24 A F E +A 20 0A 103 7,-1.2 7,-1.3 -2,-0.5 2,-0.4 -0.977 4.2 164.2-140.2 123.5 12.9 -4.8 -16.9 14 25 A V E +A 19 0A 85 -2,-0.4 2,-0.3 5,-0.2 5,-0.2 -0.939 10.1 153.6-142.8 115.4 11.0 -8.0 -16.8 15 26 A L E > -A 18 0A 81 3,-1.0 3,-1.5 -2,-0.4 2,-0.7 -0.998 59.5 -13.2-144.3 142.3 10.8 -10.3 -13.8 16 27 A X T 3 S- 0 0 138 -2,-0.3 -2,-0.0 1,-0.2 3,-0.0 -0.614 124.0 -35.2 74.9-110.4 8.2 -12.8 -12.6 17 28 A G T 3 S+ 0 0 39 -2,-0.7 2,-0.4 30,-0.0 31,-0.3 0.060 112.8 99.1-135.4 21.8 5.1 -12.3 -14.7 18 29 A Y E < -A 15 0A 139 -3,-1.5 -3,-1.0 29,-0.1 2,-0.6 -0.946 49.1-165.1-117.9 134.5 5.1 -8.6 -15.1 19 30 A K E +AB 14 46A 103 27,-1.0 27,-1.3 -2,-0.4 2,-0.4 -0.915 20.2 161.8-121.5 102.8 6.4 -6.7 -18.2 20 31 A a E +AB 13 45A 38 -7,-1.3 -7,-1.2 -2,-0.6 2,-0.4 -0.971 9.1 178.0-123.7 136.8 7.0 -3.0 -17.7 21 32 A E E -AB 12 44A 52 23,-1.4 23,-1.1 -2,-0.4 2,-0.2 -0.999 16.7-143.8-141.6 135.8 9.1 -0.8 -19.9 22 33 A I - 0 0 45 -11,-1.4 2,-0.4 -2,-0.4 21,-0.1 -0.638 12.4-163.0 -96.7 155.4 9.8 2.9 -19.7 23 34 A L 0 0 89 -2,-0.2 -13,-0.2 -13,-0.1 -20,-0.1 -0.995 360.0 360.0-142.4 132.5 10.2 5.2 -22.7 24 35 A A 0 0 77 -15,-0.9 -16,-0.1 -2,-0.4 -14,-0.1 0.137 360.0 360.0-114.5 360.0 11.8 8.6 -22.9 25 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 26 12 B T 0 0 146 0, 0.0 11,-0.5 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 144.5 -10.6 -0.7 -20.7 27 13 B A E -C 36 0A 64 9,-0.2 2,-0.5 2,-0.0 9,-0.2 -0.932 360.0-157.1-116.4 137.7 -9.9 -3.9 -18.8 28 14 B L E -C 35 0A 110 7,-1.2 7,-1.7 -2,-0.4 2,-0.7 -0.962 6.6-173.7-118.0 118.5 -11.1 -7.4 -19.8 29 15 B N + 0 0 109 -2,-0.5 2,-0.5 5,-0.2 5,-0.1 -0.841 16.1 164.0-113.9 92.3 -11.4 -10.0 -17.2 30 16 B T > - 0 0 107 -2,-0.7 3,-1.2 3,-0.4 2,-0.3 -0.950 59.8 -37.8-115.0 119.3 -12.3 -13.3 -18.8 31 17 B X T 3 S- 0 0 118 -2,-0.5 -2,-0.0 1,-0.2 0, 0.0 -0.566 116.4 -32.6 75.1-128.9 -11.9 -16.6 -16.9 32 18 B A T 3 S+ 0 0 99 -2,-0.3 2,-0.3 2,-0.0 -1,-0.2 -0.011 116.4 96.1-115.6 24.9 -8.8 -16.6 -14.7 33 19 B V < - 0 0 77 -3,-1.2 2,-0.5 2,-0.0 -3,-0.4 -0.815 61.9-143.3-115.8 156.3 -6.7 -14.4 -17.0 34 20 B Q + 0 0 89 -2,-0.3 2,-0.3 -5,-0.1 -5,-0.2 -0.983 18.3 173.5-124.8 124.6 -6.1 -10.7 -17.0 35 21 B K E +C 28 0A 140 -7,-1.7 -7,-1.2 -2,-0.5 2,-0.3 -0.664 29.9 134.4-129.4 75.2 -5.8 -8.6 -20.1 36 22 B W E -CD 27 47A 99 11,-0.8 11,-0.8 -2,-0.3 2,-0.4 -0.913 38.6-150.1-123.9 150.5 -5.6 -5.0 -19.0 37 23 B H E - D 0 46A 93 -11,-0.5 2,-0.7 -2,-0.3 9,-0.2 -0.987 2.8-160.4-125.5 127.5 -3.3 -2.2 -20.1 38 24 B F E + D 0 45A 94 7,-2.2 7,-3.1 -2,-0.4 2,-0.5 -0.904 21.3 160.2-111.2 106.2 -2.1 0.6 -17.9 39 25 B V E + D 0 44A 90 -2,-0.7 2,-0.3 5,-0.2 5,-0.2 -0.892 19.9 129.9-129.3 99.9 -0.8 3.6 -19.8 40 26 B L E > + D 0 43A 79 3,-1.2 2,-2.8 -2,-0.5 3,-0.6 -0.982 63.3 9.1-148.4 154.7 -0.7 6.9 -17.9 41 27 B X T 3 S- 0 0 140 -2,-0.3 3,-0.1 1,-0.2 -2,-0.0 -0.346 123.7 -62.3 75.0 -60.7 1.7 9.7 -17.1 42 28 B G T 3 S+ 0 0 57 -2,-2.8 2,-0.3 1,-0.5 -1,-0.2 0.093 111.0 95.2 173.8 -36.0 4.2 8.3 -19.6 43 29 B Y E < - D 0 40A 143 -3,-0.6 -3,-1.2 -21,-0.1 2,-0.5 -0.582 61.6-143.2 -81.3 140.0 5.2 4.8 -18.5 44 30 B K E +BD 21 39A 85 -23,-1.1 -23,-1.4 -2,-0.3 2,-0.4 -0.908 19.3 178.7-107.7 127.5 3.4 1.8 -19.9 45 31 B a E +BD 20 38A 32 -7,-3.1 -7,-2.2 -2,-0.5 2,-0.4 -0.976 4.2 170.5-132.1 117.5 2.7 -1.1 -17.6 46 32 B E E -BD 19 37A 55 -27,-1.3 -27,-1.0 -2,-0.4 2,-0.5 -0.995 12.0-168.3-131.8 128.8 0.8 -4.2 -18.9 47 33 B I E + D 0 36A 22 -11,-0.8 -11,-0.8 -2,-0.4 2,-0.4 -0.967 8.6 176.3-120.2 117.6 0.4 -7.5 -17.1 48 34 B L 0 0 83 -2,-0.5 -13,-0.1 -31,-0.3 -30,-0.0 -0.587 360.0 360.0-118.4 66.5 -1.0 -10.4 -19.1 49 35 B A 0 0 80 -2,-0.4 -1,-0.1 -15,-0.1 -14,-0.1 0.560 360.0 360.0-130.3 360.0 -0.8 -13.2 -16.5