==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 11-JAN-08 2JZQ . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 SYNTHETIC: YES . AUTHOR Q.X.HUA,S.NAKARAWA,W.H.JIA,K.HUANG,N.F.PHILIPS,S.Q.HU, . 57 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3748.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 39 68.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 31.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A F 0 0 95 0, 0.0 2,-0.3 0, 0.0 47,-0.0 0.000 360.0 360.0 360.0 150.8 11.5 2.2 -4.0 2 2 A V - 0 0 102 45,-0.1 2,-1.4 46,-0.0 45,-0.3 -0.872 360.0 -32.0-160.8-167.1 11.7 5.4 -1.8 3 3 A N S S+ 0 0 133 -2,-0.3 2,-0.3 43,-0.1 45,-0.1 -0.413 84.6 142.1 -63.2 93.6 9.7 8.3 -0.5 4 4 A Q B -A 47 0A 58 -2,-1.4 43,-1.0 43,-0.7 2,-0.8 -0.790 59.8 -93.8-130.1 175.1 7.4 8.7 -3.5 5 5 A H - 0 0 110 -2,-0.3 2,-0.5 41,-0.2 38,-0.2 -0.791 44.5-177.4 -92.9 108.6 3.7 9.5 -4.2 6 6 A L - 0 0 5 36,-1.0 2,-0.2 -2,-0.8 38,-0.2 -0.912 3.5-172.6-111.8 126.5 1.8 6.2 -4.5 7 7 A a > - 0 0 45 -2,-0.5 4,-4.3 35,-0.2 5,-0.3 -0.657 52.4 -76.8-108.5 168.5 -1.9 6.1 -5.3 8 8 A G H > S+ 0 0 22 -2,-0.2 4,-2.6 2,-0.2 5,-0.2 0.822 134.1 51.8 -30.3 -45.6 -4.3 3.2 -5.2 9 9 A S H > S+ 0 0 94 2,-0.2 4,-1.4 1,-0.2 3,-0.4 0.997 121.1 27.8 -60.6 -69.8 -2.7 2.1 -8.5 10 10 A D H > S+ 0 0 82 1,-0.2 4,-3.2 2,-0.2 5,-0.3 0.734 116.4 69.5 -66.4 -13.9 1.0 2.2 -7.5 11 11 A L H X S+ 0 0 0 -4,-4.3 4,-3.6 2,-0.2 5,-0.4 0.965 99.1 44.2 -67.3 -49.6 -0.4 1.5 -4.0 12 12 A V H X S+ 0 0 56 -4,-2.6 4,-2.9 -3,-0.4 -1,-0.2 0.857 115.4 51.6 -64.7 -29.0 -1.4 -2.1 -5.0 13 13 A E H X S+ 0 0 120 -4,-1.4 4,-1.8 -5,-0.2 -2,-0.2 0.992 114.2 39.6 -69.4 -59.8 1.9 -2.3 -6.7 14 14 A A H >X S+ 0 0 3 -4,-3.2 4,-3.4 1,-0.2 3,-0.6 0.959 123.3 43.1 -52.8 -48.7 3.9 -1.2 -3.7 15 15 A L H 3X>S+ 0 0 0 -4,-3.6 4,-3.1 -5,-0.3 5,-0.5 0.928 109.8 56.0 -63.1 -41.0 1.5 -3.3 -1.6 16 16 A Y H 3X5S+ 0 0 162 -4,-2.9 4,-0.6 -5,-0.4 -1,-0.3 0.772 113.8 44.0 -61.7 -21.4 1.8 -6.0 -4.2 17 17 A L H <<5S+ 0 0 104 -4,-1.8 -2,-0.2 -3,-0.6 -1,-0.2 0.932 114.3 43.7 -86.2 -61.6 5.5 -5.7 -3.4 18 18 A V H <5S+ 0 0 19 -4,-3.4 -2,-0.2 -5,-0.2 3,-0.2 0.849 127.4 35.2 -54.5 -33.6 5.5 -5.5 0.4 19 19 A b H ><5 + 0 0 6 -4,-3.1 2,-3.2 -5,-0.3 3,-1.7 0.943 69.9 150.6 -86.3 -65.0 2.9 -8.3 0.4 20 20 A G T 3< S+ 0 0 24 -2,-0.1 3,-0.8 1,-0.1 -1,-0.3 0.912 84.8 153.1 42.1 51.5 -10.6 7.3 -0.6 34 34 A P T 3 S+ 0 0 27 0, 0.0 3,-0.3 0, 0.0 -6,-0.1 0.881 76.1 39.9 -76.6 -39.4 -12.1 5.3 2.3 35 35 A R T >> S+ 0 0 36 -8,-0.3 3,-2.9 -7,-0.3 4,-1.4 -0.098 76.9 150.4 -97.6 34.0 -8.7 4.0 3.3 36 36 A R H <>> + 0 0 142 -3,-0.8 4,-2.6 1,-0.3 5,-1.2 0.739 52.2 86.8 -42.3 -21.8 -7.3 7.5 2.6 37 37 A G H 345S+ 0 0 41 -3,-0.3 5,-0.3 3,-0.2 -1,-0.3 0.951 115.7 11.4 -45.9 -44.5 -4.7 6.7 5.3 38 38 A I H <4>S+ 0 0 3 -3,-2.9 5,-1.2 3,-0.2 4,-0.4 0.887 134.3 50.0 -93.5 -60.1 -3.0 5.1 2.3 39 39 A V H <5S+ 0 0 21 -4,-1.4 -3,-0.3 1,-0.3 5,-0.2 0.830 120.9 37.4 -51.0 -35.1 -5.0 6.4 -0.6 40 40 A E T X>S+ 0 0 92 -4,-2.6 5,-0.7 -5,-0.3 4,-0.5 0.707 123.4 44.2 -92.0 -20.4 -4.8 10.0 0.7 41 41 A Q H >> - 0 0 33 -2,-0.3 3,-3.1 -45,-0.1 4,-1.4 -0.800 41.5 -93.3-119.2 163.6 7.5 3.6 2.4 49 49 A L H 3> S+ 0 0 64 1,-0.3 4,-2.7 -2,-0.3 5,-0.2 0.833 124.5 68.2 -42.5 -33.7 7.0 -0.1 2.3 50 50 A Y H 3> S+ 0 0 144 2,-0.2 4,-0.5 1,-0.2 -1,-0.3 0.927 104.0 43.5 -57.0 -37.3 7.0 0.1 6.1 51 51 A Q H X> S+ 0 0 30 -3,-3.1 3,-2.2 1,-0.2 4,-1.1 0.991 118.9 40.1 -69.6 -59.8 3.7 1.9 5.6 52 52 A L H 3< S+ 0 0 0 -4,-1.4 4,-0.3 1,-0.3 -2,-0.2 0.736 104.1 72.8 -62.0 -16.9 2.3 -0.4 3.0 53 53 A E H 3< S+ 0 0 120 -4,-2.7 -1,-0.3 -5,-0.5 3,-0.2 0.802 101.6 42.3 -68.0 -24.2 3.8 -3.1 5.1 54 54 A N H << S+ 0 0 82 -3,-2.2 -1,-0.2 -4,-0.5 -2,-0.2 0.702 105.0 63.1 -91.1 -24.9 1.0 -2.4 7.6 55 55 A Y S < S+ 0 0 35 -4,-1.1 -30,-0.8 -5,-0.1 -2,-0.2 0.430 90.8 91.0 -81.1 4.2 -1.6 -2.1 4.8 56 56 A b 0 0 4 -4,-0.3 -32,-0.2 -3,-0.2 -33,-0.1 -0.001 360.0 360.0 -83.1-164.7 -0.9 -5.8 4.0 57 57 A N 0 0 134 -34,-0.4 -33,-0.1 0, 0.0 -3,-0.1 0.749 360.0 360.0 -40.2 360.0 -2.8 -8.8 5.5