==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 31-JAN-08 2K0C . COMPND 2 MOLECULE: NUCLEAR PORE COMPLEX PROTEIN NUP153; . SOURCE 2 ORGANISM_SCIENTIFIC: RATTUS NORVEGICUS; . AUTHOR J.A.BANGERT,N.SCHRADER,I.R.VETTER,R.STOLL . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3221.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 8 22.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 123 0, 0.0 32,-0.1 0, 0.0 31,-0.1 0.000 360.0 360.0 360.0 139.6 -8.6 -12.7 2.9 2 2 A I - 0 0 122 30,-0.4 3,-0.1 2,-0.1 30,-0.1 0.933 360.0-139.0 -63.8 -43.4 -9.2 -9.4 4.7 3 3 A G S S+ 0 0 48 1,-0.3 2,-0.3 29,-0.1 -1,-0.1 0.444 70.3 90.8 97.9 -0.2 -7.9 -7.4 1.8 4 4 A T + 0 0 54 11,-0.1 -1,-0.3 12,-0.1 2,-0.3 -0.944 48.5 176.6-128.2 150.4 -6.0 -4.9 4.0 5 5 A W E -A 14 0A 48 9,-1.2 9,-1.8 -2,-0.3 2,-0.4 -0.990 19.5-137.8-148.6 157.8 -2.4 -4.9 5.3 6 6 A D E -A 13 0A 86 -2,-0.3 2,-0.7 7,-0.2 7,-0.3 -0.940 19.5-127.8-120.1 140.7 -0.0 -2.7 7.4 7 7 A C E > +A 12 0A 6 5,-2.9 5,-2.1 -2,-0.4 3,-0.2 -0.735 24.5 178.0 -87.4 115.9 3.7 -2.1 6.7 8 8 A D T 5 + 0 0 133 -2,-0.7 -1,-0.2 3,-0.2 5,-0.1 0.539 68.0 80.4 -94.5 -5.2 5.7 -2.8 9.8 9 9 A T T 5S+ 0 0 96 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.857 119.0 8.0 -68.8 -31.2 9.1 -2.0 8.1 10 10 A C T 5S- 0 0 43 -3,-0.2 -1,-0.2 2,-0.2 -2,-0.2 0.150 108.1-103.2-135.7 21.0 8.5 1.7 8.7 11 11 A L T 5S+ 0 0 155 1,-0.2 2,-0.4 -4,-0.1 -3,-0.2 0.931 76.2 135.6 58.8 46.6 5.3 1.8 10.9 12 12 A V E < -A 7 0A 49 -5,-2.1 -5,-2.9 2,-0.0 2,-0.3 -0.980 45.2-144.1-127.9 134.7 3.0 2.8 8.0 13 13 A Q E -A 6 0A 150 -2,-0.4 2,-0.4 -7,-0.3 -7,-0.2 -0.731 13.0-160.6 -96.7 145.7 -0.5 1.3 7.2 14 14 A N E -A 5 0A 14 -9,-1.8 -9,-1.2 -2,-0.3 7,-0.0 -0.963 8.9-138.1-125.7 142.1 -1.7 0.7 3.6 15 15 A K > - 0 0 154 -2,-0.4 3,-0.7 -11,-0.2 -11,-0.1 -0.434 36.6 -96.2 -91.0 170.7 -5.3 0.2 2.4 16 16 A P T 3 S+ 0 0 74 0, 0.0 -1,-0.1 0, 0.0 -12,-0.1 0.839 125.8 57.0 -54.4 -34.3 -6.5 -2.3 -0.2 17 17 A E T 3 S+ 0 0 174 2,-0.0 -13,-0.0 0, 0.0 -3,-0.0 0.891 92.3 86.5 -67.2 -36.7 -6.3 0.5 -2.8 18 18 A A < + 0 0 32 -3,-0.7 3,-0.1 1,-0.1 -4,-0.1 0.145 49.8 177.6 -51.5-179.4 -2.6 1.1 -2.0 19 19 A V + 0 0 83 1,-0.1 2,-0.4 7,-0.0 -1,-0.1 0.292 68.7 20.8-155.3 -47.0 0.1 -1.0 -3.8 20 20 A K S S- 0 0 133 5,-0.1 5,-0.2 8,-0.0 -1,-0.1 -0.971 87.9-108.9-137.3 119.5 3.5 0.1 -2.7 21 21 A C > - 0 0 0 -2,-0.4 4,-2.3 5,-0.2 -7,-0.1 -0.062 22.8-133.8 -45.0 140.5 4.0 2.0 0.6 22 22 A V T 4 S+ 0 0 142 2,-0.2 -1,-0.1 1,-0.2 -10,-0.0 0.928 101.8 49.7 -67.1 -44.4 4.9 5.7 -0.1 23 23 A A T 4 S- 0 0 74 1,-0.2 -1,-0.2 -13,-0.0 -2,-0.1 0.888 141.7 -5.2 -64.9 -39.2 7.8 5.8 2.4 24 24 A C T 4 S- 0 0 61 2,-0.0 -2,-0.2 0, 0.0 -1,-0.2 0.285 88.5-124.1-140.6 11.9 9.5 2.7 1.2 25 25 A E < - 0 0 132 -4,-2.3 -3,-0.1 -5,-0.2 -5,-0.1 0.931 31.8-144.7 40.8 78.0 7.2 1.2 -1.5 26 26 A T - 0 0 15 1,-0.1 -5,-0.2 3,-0.0 -1,-0.1 -0.412 17.5-118.4 -71.2 149.6 6.8 -2.3 -0.0 27 27 A P - 0 0 114 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.749 39.6-135.8 -58.3 -23.5 6.5 -5.2 -2.5 28 28 A K - 0 0 82 1,-0.1 -21,-0.0 2,-0.0 -8,-0.0 0.999 20.3-145.2 63.0 65.9 3.0 -5.8 -1.0 29 29 A P - 0 0 101 0, 0.0 2,-0.9 0, 0.0 -1,-0.1 -0.274 10.6-122.3 -61.2 145.2 3.3 -9.6 -0.7 30 30 A G + 0 0 83 2,-0.0 2,-0.5 0, 0.0 -2,-0.0 -0.771 43.2 164.1 -94.3 103.4 -0.0 -11.5 -1.3 31 31 A T - 0 0 94 -2,-0.9 3,-0.1 1,-0.1 0, 0.0 -0.967 34.9-151.9-123.1 129.1 -0.7 -13.5 1.8 32 32 A G S S+ 0 0 57 -2,-0.5 2,-0.4 1,-0.2 -30,-0.4 0.916 90.8 30.5 -64.0 -40.3 -4.1 -15.1 2.6 33 33 A V - 0 0 96 1,-0.1 -1,-0.2 -32,-0.1 0, 0.0 -0.967 67.3-150.8-123.4 130.9 -3.4 -14.9 6.4 34 34 A K 0 0 116 -2,-0.4 -1,-0.1 1,-0.3 -2,-0.1 0.928 360.0 360.0 -64.1 -42.0 -1.3 -12.2 8.1 35 35 A R 0 0 277 0, 0.0 -1,-0.3 0, 0.0 0, 0.0 -0.184 360.0 360.0 -81.7 360.0 -0.3 -14.6 10.9