==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 11-FEB-08 2K0P . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. GROUP G; . AUTHOR P.ROBUSTELLI,A.CAVALLI,X.SALVATELLA,M.VENDRUSCOLO . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3918.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 80.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 141 0, 0.0 20,-2.2 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 165.6 -7.2 5.8 1.5 2 2 A Q - 0 0 99 17,-0.2 2,-0.4 18,-0.2 17,-0.2 -0.963 360.0-153.6-108.1 130.7 -3.5 6.8 1.9 3 3 A Y E -A 18 0A 17 15,-2.1 15,-2.6 -2,-0.5 2,-0.5 -0.828 8.0-140.7-120.2 139.2 -1.6 7.3 -1.3 4 4 A K E -Ab 17 51A 96 46,-2.6 48,-2.7 -2,-0.4 2,-0.5 -0.808 12.3-158.6 -92.6 128.2 2.1 7.0 -2.2 5 5 A L E -Ab 16 52A 0 11,-2.7 11,-2.4 -2,-0.5 2,-0.6 -0.928 1.6-161.2-103.0 121.9 3.7 9.5 -4.6 6 6 A I E -Ab 15 53A 47 46,-2.9 48,-2.9 -2,-0.5 2,-0.5 -0.966 6.5-163.8 -97.3 119.0 6.9 8.4 -6.3 7 7 A L E -Ab 14 54A 5 7,-2.9 7,-2.3 -2,-0.6 2,-0.3 -0.888 7.1-171.8 -98.8 125.5 8.7 11.4 -7.6 8 8 A N E +A 13 0A 64 46,-1.6 48,-0.4 -2,-0.5 5,-0.2 -0.740 38.4 4.5-129.2 87.1 11.3 10.4 -10.1 9 9 A G E > S+A 12 0A 14 3,-1.7 3,-1.5 -2,-0.3 2,-0.9 -0.732 87.7 33.7 146.3 176.3 13.8 13.1 -11.5 10 10 A K T 3 S+ 0 0 157 1,-0.3 3,-0.1 -2,-0.2 28,-0.1 -0.111 122.2 16.3 51.4 -84.7 15.3 16.5 -11.7 11 11 A T T 3 S- 0 0 75 -2,-0.9 2,-0.3 1,-0.3 -1,-0.3 0.932 130.7 -4.6 -84.1 -49.8 15.1 17.8 -8.2 12 12 A L E < -A 9 0A 81 -3,-1.5 -3,-1.7 2,-0.1 2,-0.4 -0.935 45.8-149.0-151.3 155.2 14.5 14.6 -6.2 13 13 A K E +A 8 0A 173 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -1.000 52.3 93.1-121.3 129.2 13.8 10.9 -6.3 14 14 A G E -A 7 0A 35 -7,-2.3 -7,-2.9 -2,-0.4 2,-0.4 -0.964 63.3 -93.5 166.9-178.0 11.7 9.4 -3.5 15 15 A E E -A 6 0A 125 -2,-0.3 2,-0.5 -9,-0.2 -9,-0.2 -0.983 28.2-172.1-130.8 120.9 8.3 8.3 -2.1 16 16 A T E -A 5 0A 53 -11,-2.4 -11,-2.7 -2,-0.4 2,-0.6 -0.989 17.3-139.9-123.9 127.1 6.1 10.5 -0.0 17 17 A T E -A 4 0A 91 -2,-0.5 2,-0.4 -13,-0.2 -13,-0.2 -0.817 20.9-175.7 -86.5 114.3 3.0 9.2 1.7 18 18 A T E -A 3 0A 42 -15,-2.6 -15,-2.1 -2,-0.6 2,-1.8 -0.944 31.4-130.1-113.6 128.9 0.1 11.7 1.6 19 19 A E + 0 0 156 -2,-0.4 -17,-0.2 -17,-0.2 -15,-0.0 -0.671 49.5 158.7 -74.8 86.3 -3.3 10.9 3.4 20 20 A A - 0 0 3 -2,-1.8 2,-2.1 -19,-0.3 -18,-0.2 0.510 32.0-154.1 -97.7 -2.9 -5.0 11.8 0.2 21 21 A V + 0 0 102 -20,-2.2 2,-0.3 -3,-0.1 -1,-0.1 -0.385 65.1 19.4 66.3 -63.3 -8.4 10.0 0.7 22 22 A D S >> S- 0 0 87 -2,-2.1 4,-1.7 1,-0.1 3,-1.0 -0.989 78.7-105.7-147.6 137.4 -9.4 9.4 -3.0 23 23 A A H 3> S+ 0 0 28 -2,-0.3 4,-1.3 1,-0.2 -1,-0.1 0.544 115.0 51.0 -7.2 -57.3 -7.9 9.2 -6.5 24 24 A A H >> S+ 0 0 53 2,-0.2 4,-1.5 1,-0.2 3,-0.5 0.948 112.4 44.8 -58.4 -61.6 -9.3 12.7 -7.7 25 25 A T H <> S+ 0 0 72 -3,-1.0 4,-2.6 1,-0.2 5,-0.3 0.882 109.1 57.9 -55.7 -44.9 -8.0 14.6 -4.6 26 26 A A H 3X S+ 0 0 1 -4,-1.7 4,-2.3 2,-0.2 -1,-0.2 0.840 102.5 54.0 -60.8 -29.7 -4.6 12.9 -4.9 27 27 A E H S+ 0 0 2 -4,-2.4 4,-1.9 2,-0.2 5,-0.9 0.938 114.9 42.5 -56.3 -55.8 5.4 18.0 -7.9 35 35 A N H <5S+ 0 0 79 -4,-2.4 -2,-0.2 1,-0.2 -1,-0.2 0.803 111.4 57.9 -65.6 -29.9 5.3 21.5 -9.3 36 36 A D H <5S+ 0 0 104 -4,-2.3 -1,-0.2 1,-0.2 -2,-0.2 0.805 115.6 35.5 -63.0 -37.4 6.3 22.9 -5.9 37 37 A N H <5S- 0 0 52 -4,-1.4 -2,-0.2 -3,-0.5 -1,-0.2 0.676 121.5-101.9 -97.1 -19.2 9.5 20.8 -6.0 38 38 A G T <5S+ 0 0 18 -4,-1.9 2,-2.2 -5,-0.1 -3,-0.2 -0.022 83.8 115.0 129.0 -31.8 10.2 21.1 -9.8 39 39 A V < + 0 0 4 -5,-0.9 2,-0.5 -6,-0.2 -4,-0.1 -0.424 31.6 160.4 -92.0 75.9 9.1 17.8 -11.4 40 40 A D + 0 0 108 -2,-2.2 2,-0.3 -5,-0.2 -9,-0.0 -0.833 33.2 91.9 -84.0 129.1 6.2 18.8 -13.6 41 41 A G - 0 0 34 -2,-0.5 2,-0.2 15,-0.1 15,-0.2 -0.882 69.1 -4.7 175.9-144.7 5.7 16.2 -16.2 42 42 A E E -C 55 0A 119 13,-1.8 13,-3.3 -2,-0.3 2,-0.4 -0.516 54.8-141.2 -97.5 142.2 3.8 13.0 -17.0 43 43 A W E +C 54 0A 104 -2,-0.2 2,-0.3 11,-0.2 11,-0.2 -0.818 19.5 175.4-104.2 130.8 1.5 11.3 -14.6 44 44 A T E -C 53 0A 80 9,-2.2 9,-2.4 -2,-0.4 2,-0.3 -0.939 5.5-175.2-122.6 155.4 1.0 7.6 -14.0 45 45 A Y E -C 52 0A 78 -2,-0.3 2,-0.4 7,-0.2 7,-0.2 -0.990 12.0-165.5-144.9 143.8 -1.1 5.8 -11.4 46 46 A D E > -C 51 0A 82 5,-3.0 5,-2.4 -2,-0.3 3,-0.2 -0.982 8.8-157.3-128.4 128.6 -1.7 2.2 -10.3 47 47 A D T > 5S+ 0 0 111 -2,-0.4 3,-2.0 3,-0.2 -1,-0.1 0.917 84.2 54.6 -63.7 -54.1 -4.7 1.3 -8.1 48 48 A A T 3 5S+ 0 0 95 1,-0.3 -1,-0.2 2,-0.1 0, 0.0 0.780 114.5 40.2 -64.1 -31.0 -3.7 -2.0 -6.4 49 49 A T T 3 5S- 0 0 77 -3,-0.2 -1,-0.3 2,-0.1 -2,-0.2 0.219 105.9-122.2 -96.8 5.0 -0.4 -0.6 -5.0 50 50 A K T < 5 + 0 0 89 -3,-2.0 -46,-2.6 1,-0.2 2,-0.5 0.819 63.2 155.5 53.2 38.4 -1.8 2.8 -4.0 51 51 A T E < +bC 4 46A 26 -5,-2.4 -5,-3.0 -48,-0.2 2,-0.4 -0.830 31.7 178.0-118.9 125.7 0.9 4.1 -6.3 52 52 A F E -bC 5 45A 6 -48,-2.7 -46,-2.9 -2,-0.5 2,-0.4 -0.980 12.7-163.2-117.3 130.8 1.2 7.5 -8.2 53 53 A T E -bC 6 44A 27 -9,-2.4 -9,-2.2 -2,-0.4 2,-0.9 -0.970 14.9-156.9-113.9 131.2 4.3 8.3 -10.3 54 54 A V E -bC 7 43A 0 -48,-2.9 -46,-1.6 -2,-0.4 2,-0.3 -0.876 32.3-174.2 -99.6 110.1 5.4 11.6 -11.6 55 55 A T E C 0 42A 40 -13,-3.3 -13,-1.8 -2,-0.9 -46,-0.1 -0.714 360.0 360.0-108.8 145.3 7.6 10.6 -14.4 56 56 A E 0 0 151 -48,-0.4 -15,-0.1 -2,-0.3 -17,-0.0 -0.751 360.0 360.0 -67.9 360.0 9.9 12.5 -16.8