==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSFERASE 24-SEP-01 1K18 . COMPND 2 MOLECULE: DNA POLYMERASE ALPHA CATALYTIC SUBUNIT; . SOURCE 2 SYNTHETIC: YES; . AUTHOR F.EVANICS,L.MAURMANN,W.W.YANG,R.N.BOSE . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2809.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 48.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 22.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A I 0 0 119 0, 0.0 2,-1.9 0, 0.0 30,-0.2 0.000 360.0 360.0 360.0 -66.6 9.2 1.5 4.2 2 2 A C + 0 0 17 28,-0.7 2,-0.5 4,-0.1 28,-0.1 -0.291 360.0 149.3 -74.2 77.7 7.9 0.5 0.7 3 3 A E > - 0 0 162 -2,-1.9 3,-3.0 28,-0.1 4,-0.1 -0.894 67.1-100.6 -90.4 123.9 10.2 -2.0 -1.2 4 4 A E T 3> S+ 0 0 162 -2,-0.5 4,-1.0 1,-0.3 6,-0.1 0.284 120.5 61.6 -66.4 3.5 7.5 -3.9 -3.2 5 5 A P H 3> S+ 0 0 98 0, 0.0 4,-1.6 0, 0.0 -1,-0.3 0.755 110.3 52.2 -61.6 -21.7 6.8 -7.2 -1.3 6 6 A T H <> S+ 0 0 47 -3,-3.0 4,-2.3 2,-0.2 5,-0.2 0.960 106.2 51.2 -69.7 -55.0 5.8 -4.4 1.3 7 7 A C H > S+ 0 0 12 2,-0.3 4,-0.8 1,-0.2 5,-0.2 0.642 104.5 56.0 -49.5 -28.2 3.5 -2.8 -1.5 8 8 A R H >X S+ 0 0 207 -4,-1.0 4,-2.3 2,-0.2 3,-0.6 0.942 110.9 43.2 -60.9 -55.4 2.0 -6.2 -2.0 9 9 A N H 3X S+ 0 0 98 -4,-1.6 4,-1.2 1,-0.2 -2,-0.3 0.802 118.0 48.9 -50.7 -39.6 1.2 -6.0 1.8 10 10 A R H 3< S+ 0 0 73 -4,-2.3 -1,-0.2 2,-0.3 -3,-0.2 0.537 106.4 51.1 -76.8 -22.8 0.1 -2.2 1.1 11 11 A T H << S+ 0 0 61 -4,-0.8 -2,-0.2 -3,-0.6 5,-0.2 0.724 109.5 52.4 -71.5 -40.5 -2.1 -3.0 -1.8 12 12 A R H < S+ 0 0 144 -4,-2.3 -2,-0.3 2,-0.2 -3,-0.2 0.917 107.3 49.7 -45.0 -45.3 -3.4 -5.4 0.8 13 13 A H S < S+ 0 0 56 -4,-1.2 3,-0.5 2,-0.2 6,-0.3 0.615 95.3 73.0 -63.7 -23.4 -3.6 -2.2 2.9 14 14 A L S S+ 0 0 30 1,-0.2 -2,-0.2 3,-0.1 -1,-0.2 0.954 91.4 54.2 -49.4 -54.4 -5.4 -0.9 -0.2 15 15 A P S S+ 0 0 101 0, 0.0 2,-0.3 0, 0.0 -2,-0.2 0.301 86.4 80.5 -66.4 20.9 -8.2 -3.1 1.0 16 16 A L S > S- 0 0 86 -3,-0.5 2,-1.8 -5,-0.2 3,-1.1 -0.674 87.7-166.4 -90.9 70.0 -7.7 -1.1 4.0 17 17 A Q T 3 + 0 0 162 -2,-0.3 -3,-0.1 1,-0.3 -4,-0.0 -0.223 63.1 107.2 -83.2 65.7 -9.9 1.4 1.9 18 18 A F T 3 S+ 0 0 205 -2,-1.8 2,-0.3 -4,-0.0 -1,-0.3 0.737 89.9 65.3 -53.6 -47.4 -9.6 4.6 3.5 19 19 A S < + 0 0 10 -3,-1.1 2,-0.3 -6,-0.3 -3,-0.0 -0.616 49.9 179.6 -74.0 139.3 -7.5 4.7 0.2 20 20 A R S S- 0 0 209 -2,-0.3 -6,-0.0 -5,-0.0 -3,-0.0 -0.845 105.6 -36.6-113.7 89.4 -8.4 4.5 -3.4 21 21 A T S S+ 0 0 67 3,-0.5 6,-0.1 -2,-0.3 4,-0.1 0.867 98.7 146.5 56.5 48.0 -4.6 4.9 -4.0 22 22 A G S S- 0 0 54 1,-0.1 -1,-0.1 2,-0.1 6,-0.1 -0.470 101.2 -39.9-135.6 71.2 -4.0 7.4 -1.1 23 23 A P S > S+ 0 0 48 0, 0.0 4,-0.7 0, 0.0 2,-0.4 -0.403 110.5 135.7-113.3 70.0 -1.2 6.2 -0.7 24 24 A L T 4 S- 0 0 19 2,-0.3 -3,-0.5 3,-0.2 -13,-0.2 -0.901 75.4 -38.8-127.2 134.9 -1.9 2.4 -1.2 25 25 A C T 4 S+ 0 0 4 -2,-0.4 -14,-0.2 -18,-0.2 2,-0.2 -0.445 136.6 25.9-129.2 90.7 0.1 0.6 -3.0 26 26 A P T 4 S+ 0 0 109 0, 0.0 -2,-0.3 0, 0.0 -4,-0.1 -0.011 113.5 62.9 -55.2 123.8 1.0 2.3 -5.6 27 27 A A S < S+ 0 0 42 -4,-0.7 2,-0.4 -2,-0.2 -3,-0.2 -0.417 70.6 148.0-132.4 47.0 0.7 5.2 -4.4 28 28 A C - 0 0 41 1,-0.1 2,-1.1 -6,-0.1 -4,-0.1 -0.208 27.4-172.0 -60.8 109.6 3.3 4.8 -1.5 29 29 A M + 0 0 183 -2,-0.4 2,-0.3 -6,-0.1 -1,-0.1 -0.416 57.1 107.6 -86.2 60.2 5.3 8.0 -0.5 30 30 A K 0 0 53 -2,-1.1 -28,-0.7 -28,-0.1 -2,-0.1 -0.916 360.0 360.0-141.9 109.1 7.6 5.9 1.8 31 31 A A 0 0 130 -2,-0.3 -28,-0.1 -30,-0.2 -2,-0.0 -0.352 360.0 360.0 59.5 360.0 11.3 5.2 0.7