==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 08-APR-08 2K2P . COMPND 2 MOLECULE: UNCHARACTERIZED PROTEIN ATU1203; . SOURCE 2 ORGANISM_SCIENTIFIC: AGROBACTERIUM TUMEFACIENS STR.; . AUTHOR A.LEMAK,A.GUTMANAS,A.YEE,A.SEMESI,C.H.ARROWSMITH,NORTHEAST S . 64 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3634.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 78.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 18.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 22 34.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 22 A A 0 0 86 0, 0.0 44,-1.2 0, 0.0 45,-0.9 0.000 360.0 360.0 360.0 176.6 6.6 5.4 11.2 2 23 A G E -A 44 0A 55 42,-0.2 42,-0.3 43,-0.2 45,-0.1 -0.898 360.0-154.5-142.0 107.3 4.7 6.1 7.9 3 24 A L E -A 43 0A 38 40,-2.0 40,-1.4 -2,-0.3 2,-0.3 -0.285 5.2-162.9 -79.4 164.3 5.8 4.2 4.7 4 25 A S E -A 42 0A 74 38,-0.2 2,-0.5 60,-0.1 38,-0.2 -0.863 4.1-173.4-152.5 110.7 5.2 5.3 1.1 5 26 A F E -A 41 0A 15 36,-2.2 36,-2.3 -2,-0.3 2,-1.4 -0.947 20.2-140.9-110.4 116.4 5.5 2.9 -1.9 6 27 A H E -A 40 0A 94 -2,-0.5 2,-1.3 34,-0.2 34,-0.3 -0.619 19.0-176.5 -82.1 90.7 5.3 4.5 -5.4 7 28 A V > - 0 0 0 -2,-1.4 3,-1.1 32,-1.2 -1,-0.1 -0.758 2.3-178.6 -84.2 87.4 3.2 2.0 -7.4 8 29 A E T 3 S+ 0 0 105 -2,-1.3 -1,-0.2 1,-0.2 32,-0.1 0.512 77.0 60.6 -74.1 -5.7 3.5 3.9 -10.8 9 30 A D T 3 S+ 0 0 117 53,-0.1 2,-0.4 30,-0.1 -1,-0.2 0.689 77.7 111.1 -86.5 -22.1 1.3 1.2 -12.5 10 31 A M < + 0 0 0 -3,-1.1 2,-0.4 29,-0.2 29,-0.1 -0.372 45.7 178.3 -65.1 109.2 -1.6 2.0 -10.1 11 32 A T > - 0 0 93 -2,-0.4 4,-0.8 1,-0.1 5,-0.1 -0.975 45.0 -12.7-117.5 128.3 -4.4 3.7 -12.2 12 33 A C H >> S- 0 0 56 -2,-0.4 4,-2.2 1,-0.2 3,-0.9 0.465 85.1 -77.8 65.7 159.4 -7.8 4.7 -10.7 13 34 A G H 3> S+ 0 0 52 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.531 124.4 69.0 -67.4 -9.1 -9.4 3.9 -7.3 14 35 A H H 3> S+ 0 0 165 2,-0.2 4,-0.9 3,-0.1 -1,-0.2 0.907 111.3 30.4 -71.2 -44.4 -10.4 0.4 -8.7 15 36 A C H < S- 0 0 25 -4,-2.6 3,-1.9 -5,-0.1 2,-0.8 -0.890 74.9-153.7-121.4 94.5 -2.7 -5.1 9.4 28 49 A P T 3 S+ 0 0 122 0, 0.0 3,-0.1 0, 0.0 -3,-0.1 -0.618 91.1 33.6 -62.2 104.3 -5.4 -3.5 11.7 29 50 A G T 3 S+ 0 0 60 -2,-0.8 2,-0.8 1,-0.3 -5,-0.1 0.372 79.0 125.8 121.6 -0.1 -3.8 0.0 12.2 30 51 A A < - 0 0 5 -3,-1.9 2,-1.3 -6,-0.2 -1,-0.3 -0.839 56.8-142.8 -84.0 108.7 -2.0 0.5 8.8 31 52 A A E -B 44 0A 65 13,-1.9 13,-1.1 -2,-0.8 2,-0.3 -0.642 25.2-161.5 -78.5 96.0 -3.4 3.9 7.6 32 53 A V E +B 43 0A 18 -2,-1.3 2,-0.2 11,-0.2 11,-0.2 -0.584 25.3 164.3 -89.0 131.5 -3.7 3.1 3.9 33 54 A H E -B 42 0A 108 9,-1.5 9,-2.0 -2,-0.3 2,-0.7 -0.764 9.6-176.2-143.2 99.9 -4.0 5.8 1.1 34 55 A A E -B 41 0A 6 7,-0.3 7,-0.3 -2,-0.2 -18,-0.1 -0.896 14.7-162.7 -92.5 113.8 -3.3 4.6 -2.4 35 56 A D E >> -B 40 0A 55 5,-2.3 4,-1.7 -2,-0.7 5,-0.8 -0.898 16.1-158.2-106.9 120.5 -3.5 7.7 -4.6 36 57 A P T 45S+ 0 0 48 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.841 94.9 47.4 -63.1 -35.3 -3.9 7.3 -8.4 37 58 A A T 45S+ 0 0 73 1,-0.2 -26,-0.0 3,-0.1 -2,-0.0 0.813 122.6 32.7 -78.5 -35.2 -2.5 10.8 -9.2 38 59 A S T 45S- 0 0 73 2,-0.1 -1,-0.2 0, 0.0 3,-0.1 0.631 96.9-140.8 -91.4 -19.6 0.6 10.5 -6.9 39 60 A R T <5 + 0 0 126 -4,-1.7 -32,-1.2 1,-0.2 2,-0.4 0.767 57.7 133.8 60.8 33.8 0.8 6.7 -7.6 40 61 A T E < -AB 6 35A 29 -5,-0.8 -5,-2.3 -34,-0.3 2,-0.7 -0.925 49.0-158.1-124.7 131.5 1.7 6.3 -3.9 41 62 A V E -AB 5 34A 0 -36,-2.3 -36,-2.2 -2,-0.4 2,-0.4 -0.935 19.2-170.6-105.9 105.6 0.5 3.9 -1.2 42 63 A V E -AB 4 33A 60 -9,-2.0 -9,-1.5 -2,-0.7 2,-0.4 -0.819 6.2-170.9 -99.7 136.1 1.2 5.4 2.2 43 64 A V E -AB 3 32A 0 -40,-1.4 -40,-2.0 -2,-0.4 3,-0.5 -0.954 9.2-163.0-131.0 109.4 0.7 3.3 5.4 44 65 A G E +AB 2 31A 25 -13,-1.1 -13,-1.9 -2,-0.4 -42,-0.2 -0.547 65.3 34.5 -92.8 157.7 0.9 5.1 8.8 45 66 A G S S+ 0 0 72 -44,-1.2 2,-0.3 1,-0.2 -1,-0.2 0.410 97.6 98.5 84.2 0.4 1.4 3.7 12.3 46 67 A V - 0 0 15 -45,-0.9 -1,-0.2 -3,-0.5 -43,-0.2 -0.915 43.6-179.2-124.1 144.7 3.7 0.9 11.1 47 68 A S + 0 0 88 -2,-0.3 2,-1.9 -3,-0.1 3,-0.2 0.528 61.6 101.4-108.9 -17.7 7.5 0.6 11.0 48 69 A D > + 0 0 108 1,-0.2 4,-2.3 -47,-0.1 5,-0.2 -0.490 38.3 162.8 -78.8 76.5 7.5 -2.9 9.3 49 70 A A H > S+ 0 0 38 -2,-1.9 4,-2.2 1,-0.2 -1,-0.2 0.864 76.2 51.1 -60.6 -41.5 8.3 -1.8 5.7 50 71 A A H > S+ 0 0 75 2,-0.2 4,-1.5 -3,-0.2 -1,-0.2 0.878 110.4 49.0 -65.5 -41.5 9.3 -5.4 4.7 51 72 A H H > S+ 0 0 97 2,-0.2 4,-1.4 1,-0.2 3,-0.3 0.938 112.9 46.2 -63.3 -50.7 6.1 -6.8 6.1 52 73 A I H X S+ 0 0 0 -4,-2.3 4,-2.2 1,-0.2 5,-0.2 0.895 109.3 56.6 -58.6 -42.3 3.9 -4.3 4.3 53 74 A A H X S+ 0 0 19 -4,-2.2 4,-1.7 1,-0.2 -1,-0.2 0.835 104.4 52.5 -59.6 -38.0 5.9 -4.9 1.1 54 75 A E H X S+ 0 0 137 -4,-1.5 4,-1.3 -3,-0.3 -1,-0.2 0.872 110.2 48.8 -64.7 -40.1 5.0 -8.7 1.3 55 76 A I H X S+ 0 0 18 -4,-1.4 4,-0.8 -3,-0.2 -2,-0.2 0.938 113.9 42.6 -67.2 -51.5 1.3 -7.9 1.6 56 77 A I H <>S+ 0 0 0 -4,-2.2 5,-1.6 1,-0.2 -1,-0.2 0.799 114.1 51.5 -71.1 -29.9 1.0 -5.4 -1.4 57 78 A T H ><5S+ 0 0 71 -4,-1.7 3,-1.0 -5,-0.2 -1,-0.2 0.793 104.4 57.9 -75.2 -28.9 3.3 -7.6 -3.6 58 79 A A H 3<5S+ 0 0 86 -4,-1.3 -2,-0.2 1,-0.2 -1,-0.2 0.755 99.7 58.7 -67.3 -26.2 0.9 -10.6 -2.8 59 80 A A T 3<5S- 0 0 37 -4,-0.8 -1,-0.2 2,-0.1 -2,-0.2 0.522 128.3-105.0 -76.8 -8.7 -1.8 -8.3 -4.3 60 81 A G T < 5S+ 0 0 66 -3,-1.0 2,-0.3 1,-0.3 -3,-0.2 0.714 82.3 120.1 91.3 25.0 0.3 -8.4 -7.5 61 82 A Y < - 0 0 39 -5,-1.6 -1,-0.3 -42,-0.0 -2,-0.1 -0.865 67.6-110.3-120.4 155.1 1.7 -4.8 -7.3 62 83 A T - 0 0 67 -2,-0.3 2,-1.7 1,-0.1 -53,-0.1 -0.755 21.0-147.8 -89.8 111.1 5.4 -3.6 -7.0 63 84 A P 0 0 34 0, 0.0 -56,-0.1 0, 0.0 -10,-0.1 -0.561 360.0 360.0 -78.9 79.5 6.2 -2.1 -3.5 64 85 A E 0 0 121 -2,-1.7 -57,-0.1 -58,-0.1 -60,-0.1 0.923 360.0 360.0 -83.7 360.0 8.7 0.5 -4.7