==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 30-SEP-09 3K2T . COMPND 2 MOLECULE: LMO2511 PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: LISTERIA MONOCYTOGENES; . AUTHOR J.SEETHARAMAN,M.SU,D.WANG,H.JANJUA,K.CUNNINGHAM,L.OWENS, . 53 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4377.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 49.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 20.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 17.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 167 0, 0.0 2,-0.2 0, 0.0 18,-0.0 0.000 360.0 360.0 360.0 30.6 10.2 16.1 15.9 2 2 A I + 0 0 133 17,-0.1 2,-0.3 0, 0.0 17,-0.0 -0.534 360.0 166.1 178.3 110.6 9.1 16.2 12.3 3 3 A V - 0 0 109 1,-0.2 3,-0.0 -2,-0.2 0, 0.0 -0.883 30.0-141.2-129.7 159.4 5.6 15.2 11.0 4 4 A R - 0 0 96 -2,-0.3 -1,-0.2 1,-0.1 2,-0.2 0.933 59.3 -73.2 -83.1 -77.7 3.8 15.8 7.7 5 5 A T - 0 0 119 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.587 36.8-118.1 171.9 120.9 0.2 16.5 8.6 6 6 A K 0 0 96 1,-0.3 -3,-0.0 -2,-0.2 0, 0.0 -0.511 360.0 360.0 -73.3 130.3 -2.8 14.4 9.9 7 7 A Q 0 0 234 -2,-0.3 -1,-0.3 0, 0.0 0, 0.0 0.594 360.0 360.0 65.1 360.0 -5.8 14.1 7.7 8 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 9 11 A K 0 0 125 0, 0.0 22,-0.3 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 142.3 10.2 10.4 4.0 10 12 A P + 0 0 78 0, 0.0 2,-0.3 0, 0.0 22,-0.2 -0.394 360.0 168.2 -71.2 146.4 11.2 6.7 3.9 11 13 A M B -a 32 0A 30 20,-2.2 22,-0.9 -2,-0.1 2,-0.2 -0.890 31.5-104.3-147.8 172.9 13.4 5.3 6.7 12 14 A D >> - 0 0 51 -2,-0.3 4,-1.8 20,-0.2 3,-0.8 -0.548 45.8 -90.6 -99.3 171.3 14.6 2.0 8.0 13 15 A S H 3> S+ 0 0 57 1,-0.2 4,-2.0 2,-0.2 3,-0.2 0.881 122.3 52.7 -46.4 -51.9 13.4 0.2 11.2 14 16 A E H 3> S+ 0 0 158 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.820 109.7 48.9 -59.2 -33.8 15.9 1.8 13.6 15 17 A E H <> S+ 0 0 94 -3,-0.8 4,-1.9 2,-0.2 -1,-0.2 0.851 108.5 53.2 -74.8 -34.8 15.0 5.3 12.5 16 18 A A H X S+ 0 0 0 -4,-1.8 4,-2.9 2,-0.2 -2,-0.2 0.881 106.3 53.4 -66.8 -39.5 11.3 4.7 12.9 17 19 A V H X S+ 0 0 22 -4,-2.0 4,-2.4 2,-0.2 -1,-0.2 0.904 107.2 51.5 -61.2 -42.8 11.8 3.5 16.4 18 20 A L H X S+ 0 0 96 -4,-1.3 4,-2.3 1,-0.2 -1,-0.2 0.921 113.5 44.3 -61.6 -43.4 13.6 6.7 17.3 19 21 A Q H X S+ 0 0 41 -4,-1.9 4,-1.7 2,-0.2 -2,-0.2 0.876 109.3 57.2 -67.9 -38.2 10.7 8.7 15.8 20 22 A M H X>S+ 0 0 0 -4,-2.9 5,-3.0 1,-0.2 4,-0.6 0.920 113.5 39.3 -57.8 -44.9 8.2 6.5 17.6 21 23 A N H <5S+ 0 0 69 -4,-2.4 -2,-0.2 3,-0.2 -1,-0.2 0.851 106.9 61.0 -76.4 -35.9 9.8 7.2 21.0 22 24 A L H <5S+ 0 0 102 -4,-2.3 -1,-0.2 1,-0.3 -2,-0.2 0.888 114.4 38.7 -57.9 -36.9 10.5 11.0 20.4 23 25 A L H <5S- 0 0 67 -4,-1.7 -1,-0.3 -5,-0.2 -2,-0.2 0.656 114.4-124.7 -84.4 -19.7 6.7 11.3 20.0 24 26 A G T <5 + 0 0 58 -4,-0.6 -3,-0.2 1,-0.2 2,-0.2 0.841 56.1 150.4 78.9 34.5 6.2 8.8 22.8 25 27 A H < - 0 0 104 -5,-3.0 -1,-0.2 -6,-0.2 3,-0.1 -0.594 51.9-136.4 -98.8 162.0 4.0 6.4 20.9 26 28 A S S S+ 0 0 78 -2,-0.2 17,-2.2 1,-0.2 2,-0.3 0.623 90.8 14.7 -88.7 -17.3 3.5 2.6 21.2 27 29 A F E -B 42 0B 112 15,-0.2 2,-0.4 -7,-0.1 15,-0.3 -0.978 65.7-155.9-153.6 156.1 3.6 2.0 17.5 28 30 A Y E -B 41 0B 40 13,-2.5 13,-1.9 -2,-0.3 2,-0.4 -0.976 7.6-148.1-144.7 125.1 4.6 4.0 14.4 29 31 A V E +B 40 0B 83 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.777 35.2 143.9 -94.0 133.4 3.5 3.7 10.8 30 32 A Y E -B 39 0B 12 9,-2.5 9,-2.7 -2,-0.4 2,-0.4 -0.921 48.6 -94.5-155.6 178.4 6.0 4.5 8.1 31 33 A T E -B 38 0B 54 -22,-0.3 -20,-2.2 -2,-0.3 7,-0.2 -0.876 40.3-124.2-104.2 134.3 7.4 3.7 4.6 32 34 A D B -a 11 0A 8 5,-2.9 4,-0.4 -2,-0.4 -20,-0.2 -0.436 13.5-131.2 -76.3 152.9 10.4 1.4 4.4 33 35 A A S S+ 0 0 46 -22,-0.9 -1,-0.1 2,-0.1 -21,-0.1 1.000 96.3 21.4 -66.5 -73.0 13.6 2.6 2.5 34 36 A E S S+ 0 0 145 1,-0.2 -1,-0.1 2,-0.1 -22,-0.1 0.819 132.9 39.0 -70.2 -34.1 14.5 -0.3 0.2 35 37 A T S S- 0 0 87 2,-0.1 -1,-0.2 1,-0.0 -2,-0.1 0.849 87.7-149.0 -83.9 -34.3 11.1 -2.0 -0.1 36 38 A N + 0 0 116 -4,-0.4 2,-0.2 1,-0.3 -3,-0.1 0.666 52.2 134.2 72.5 18.0 9.1 1.2 -0.1 37 39 A G - 0 0 22 1,-0.1 -5,-2.9 -6,-0.1 2,-0.5 -0.630 67.0 -96.1 -97.3 158.1 6.3 -0.7 1.6 38 40 A T E -B 31 0B 66 16,-0.3 2,-0.3 -2,-0.2 -7,-0.2 -0.611 49.3-179.1 -74.9 118.2 4.3 0.4 4.6 39 41 A N E -B 30 0B 7 -9,-2.7 -9,-2.5 -2,-0.5 2,-0.4 -0.759 18.4-148.3-115.8 165.2 5.8 -1.0 7.8 40 42 A I E -BC 29 52B 37 12,-2.5 12,-2.7 -2,-0.3 2,-0.4 -0.956 8.4-170.1-137.3 116.6 4.9 -0.7 11.5 41 43 A V E +BC 28 51B 4 -13,-1.9 -13,-2.5 -2,-0.4 2,-0.3 -0.819 18.8 164.8-101.9 145.6 7.3 -0.7 14.4 42 44 A Y E -BC 27 50B 64 8,-2.1 8,-2.5 -2,-0.4 2,-0.3 -0.991 38.5 -99.0-157.1 161.0 6.0 -1.0 18.0 43 45 A S E - C 0 49B 52 -17,-2.2 6,-0.2 -2,-0.3 2,-0.2 -0.642 32.9-149.5 -85.6 138.6 7.0 -1.8 21.5 44 46 A R > - 0 0 129 4,-2.9 3,-1.2 -2,-0.3 6,-0.0 -0.589 26.6-110.0 -99.1 167.5 6.3 -5.3 22.9 45 47 A K T 3 S+ 0 0 223 1,-0.3 -1,-0.1 -2,-0.2 4,-0.0 0.891 114.7 60.0 -67.3 -38.8 5.5 -6.0 26.5 46 48 A D T 3 S- 0 0 106 1,-0.1 -1,-0.3 2,-0.0 3,-0.1 0.376 122.3-103.4 -72.7 9.7 8.8 -7.7 27.3 47 49 A G S < S+ 0 0 58 -3,-1.2 -1,-0.1 1,-0.3 -2,-0.1 0.199 86.4 116.7 91.5 -18.4 10.6 -4.5 26.3 48 50 A K - 0 0 144 -5,-0.1 -4,-2.9 1,-0.1 -1,-0.3 -0.336 63.7-116.3 -78.4 167.0 11.7 -5.7 22.8 49 51 A Y E -C 43 0B 119 -6,-0.2 2,-0.3 -3,-0.1 -6,-0.2 -0.706 24.5-160.2-103.0 156.6 10.6 -4.0 19.6 50 52 A G E -C 42 0B 13 -8,-2.5 -8,-2.1 -2,-0.3 2,-0.4 -0.912 2.0-152.8-132.9 159.6 8.5 -5.7 16.8 51 53 A L E -C 41 0B 70 -2,-0.3 2,-0.4 -10,-0.2 -10,-0.2 -0.997 2.1-162.1-140.2 134.8 7.9 -4.9 13.2 52 54 A I E -C 40 0B 90 -12,-2.7 -12,-2.5 -2,-0.4 2,-0.3 -0.904 17.5-142.4-112.9 142.5 5.1 -5.6 10.9 53 55 A E 0 0 142 -2,-0.4 -14,-0.2 -14,-0.2 -15,-0.1 -0.778 360.0 360.0-109.5 152.6 5.5 -5.4 7.1 54 56 A T 0 0 144 -2,-0.3 -16,-0.3 -16,-0.2 -1,-0.1 -0.299 360.0 360.0 64.6 360.0 3.2 -4.2 4.3