==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 03-OCT-01 1K3M . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR B.XU,Q.-X.HUA,S.H.NAKAGAWA,W.JIA,Y.-C.CHU,P.G.KATSOYANNIS, . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4367.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 52.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 25.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 131 0, 0.0 2,-0.2 0, 0.0 48,-0.1 0.000 360.0 360.0 360.0-156.2 -8.4 5.6 1.0 2 2 A A + 0 0 29 46,-0.2 28,-0.2 17,-0.0 3,-0.1 -0.586 360.0 105.0-148.4 82.0 -4.7 5.1 0.0 3 3 A V + 0 0 65 1,-0.2 2,-2.2 -2,-0.2 27,-0.4 0.628 69.5 54.3-122.6 -69.3 -3.4 7.1 -2.9 4 4 A E S S+ 0 0 161 1,-0.2 -1,-0.2 25,-0.1 25,-0.1 -0.443 82.8 99.8 -71.6 81.8 -1.2 10.0 -1.9 5 5 A Q S S+ 0 0 109 -2,-2.2 -1,-0.2 23,-0.5 6,-0.1 -0.186 86.6 14.1-163.1 60.6 1.3 7.9 0.1 6 6 A a S > S+ 0 0 10 4,-0.1 3,-1.5 5,-0.1 21,-0.4 0.063 97.8 85.5 160.0 -32.5 4.5 7.0 -1.8 7 7 A b T 3 S+ 0 0 39 21,-0.9 22,-0.1 20,-0.4 3,-0.1 0.340 92.7 54.4 -78.0 14.3 4.7 9.3 -4.9 8 8 A T T 3 S- 0 0 113 20,-0.2 2,-0.3 0, 0.0 -1,-0.3 0.081 133.2 -27.5-129.3 20.1 6.3 12.0 -2.7 9 9 A S S < S- 0 0 70 -3,-1.5 18,-0.9 19,-0.0 2,-0.4 -0.934 91.0 -64.2 165.0-139.8 9.2 9.8 -1.4 10 10 A I - 0 0 87 -2,-0.3 -4,-0.1 16,-0.1 -3,-0.1 -0.885 38.7-174.1-146.9 115.4 9.4 6.0 -0.9 11 11 A a - 0 0 60 -2,-0.4 2,-0.5 -6,-0.1 -5,-0.1 0.389 48.3 -74.2 -78.8-138.4 7.3 3.9 1.6 12 12 A S > - 0 0 55 1,-0.1 4,-1.9 0, 0.0 3,-0.4 -0.905 24.6-143.9-130.5 107.8 8.1 0.2 2.0 13 13 A L H > S+ 0 0 55 -2,-0.5 4,-1.4 1,-0.2 5,-0.2 0.809 102.4 65.5 -37.4 -29.9 7.1 -2.3 -0.7 14 14 A Y H >> S+ 0 0 157 2,-0.2 3,-2.5 1,-0.2 4,-1.2 0.998 100.9 42.4 -59.7 -67.6 6.4 -4.5 2.2 15 15 A Q H 34 S+ 0 0 129 -3,-0.4 3,-0.3 1,-0.3 -1,-0.2 0.840 108.9 65.6 -48.4 -26.3 3.6 -2.5 3.7 16 16 A L H >< S+ 0 0 7 -4,-1.9 3,-1.8 1,-0.2 -1,-0.3 0.890 94.3 55.2 -65.0 -35.6 2.6 -2.3 0.0 17 17 A E H X< S+ 0 0 98 -3,-2.5 3,-1.1 -4,-1.4 -1,-0.2 0.818 100.8 60.1 -67.4 -25.0 2.0 -6.0 0.0 18 18 A N T 3< S+ 0 0 143 -4,-1.2 -1,-0.3 -3,-0.3 -2,-0.2 0.470 92.9 67.1 -81.0 2.8 -0.4 -5.3 2.9 19 19 A Y T < S+ 0 0 88 -3,-1.8 28,-1.3 -4,-0.1 -1,-0.2 0.520 87.2 86.6 -97.1 -6.2 -2.3 -3.1 0.5 20 20 A c B < A 46 0A 8 -3,-1.1 26,-0.4 -4,-0.3 25,-0.1 0.129 360.0 360.0 -74.4-162.3 -3.3 -6.2 -1.5 21 21 A N 0 0 143 24,-3.6 -1,-0.1 25,-0.1 26,-0.1 0.073 360.0 360.0 -64.3 360.0 -6.4 -8.3 -0.8 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 182 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 161.5 14.3 -2.5 -2.2 24 2 B V + 0 0 130 2,-0.0 2,-0.2 -11,-0.0 -14,-0.0 -0.951 360.0 135.2-122.5 140.4 14.0 -0.1 -5.2 25 3 B N - 0 0 62 -2,-0.4 2,-0.5 -14,-0.0 3,-0.1 -0.844 31.9-152.8-177.3 138.2 11.0 2.1 -6.1 26 4 B Q - 0 0 166 1,-0.3 -16,-0.1 -2,-0.2 -19,-0.1 -0.875 68.6 -25.2-127.4 105.3 10.5 5.7 -7.3 27 5 B H - 0 0 100 -18,-0.9 -20,-0.4 -2,-0.5 2,-0.4 0.732 60.8-162.0 65.9 120.9 7.2 7.4 -6.5 28 6 B L + 0 0 13 -19,-0.2 -21,-0.9 -3,-0.1 -23,-0.5 -0.893 21.9 151.8-138.4 108.8 4.1 5.3 -5.9 29 7 B b >> - 0 0 20 -2,-0.4 3,-2.0 -23,-0.2 4,-0.6 -0.988 66.4 -65.7-140.4 130.6 0.6 6.7 -6.1 30 8 B G H 3> S+ 0 0 2 -27,-0.4 4,-3.0 -2,-0.4 5,-0.3 0.083 136.1 38.0 29.6 -90.2 -2.7 5.0 -7.2 31 9 B S H 3> S+ 0 0 78 1,-0.2 4,-2.0 2,-0.2 -1,-0.3 0.954 129.9 33.0 -48.0 -58.3 -1.7 4.4 -10.8 32 10 B D H <> S+ 0 0 68 -3,-2.0 4,-1.6 1,-0.2 5,-0.3 0.812 118.9 55.0 -71.6 -26.1 2.0 3.6 -9.9 33 11 B L H X S+ 0 0 7 -4,-0.6 4,-1.6 3,-0.2 -1,-0.2 0.792 109.2 48.2 -77.0 -24.4 0.8 2.0 -6.6 34 12 B V H X S+ 0 0 38 -4,-3.0 4,-2.8 -5,-0.3 5,-0.3 0.947 112.0 45.5 -80.0 -50.5 -1.5 -0.3 -8.4 35 13 B E H X S+ 0 0 145 -4,-2.0 4,-1.7 -5,-0.3 -2,-0.2 0.917 121.5 40.4 -60.1 -38.9 0.9 -1.6 -11.0 36 14 B A H X S+ 0 0 14 -4,-1.6 4,-2.8 -5,-0.2 5,-0.2 0.910 109.6 60.4 -76.1 -39.0 3.5 -2.0 -8.3 37 15 B L H X S+ 0 0 11 -4,-1.6 4,-6.6 -5,-0.3 5,-0.4 0.960 108.2 43.9 -50.9 -52.5 0.9 -3.4 -5.9 38 16 B Y H X S+ 0 0 143 -4,-2.8 4,-1.9 2,-0.3 -1,-0.2 0.932 113.1 50.1 -61.1 -41.4 0.2 -6.2 -8.4 39 17 B L H < S+ 0 0 143 -4,-1.7 -1,-0.3 -5,-0.3 -2,-0.2 0.844 121.0 39.0 -63.8 -26.7 4.0 -6.7 -8.8 40 18 B V H < S+ 0 0 12 -4,-2.8 -2,-0.3 1,-0.1 -3,-0.2 0.928 116.4 46.5 -83.6 -57.1 3.9 -6.7 -5.1 41 19 B c H >< S- 0 0 4 -4,-6.6 3,-2.3 1,-0.2 2,-2.1 0.675 88.3-164.5 -61.8 -15.8 0.7 -8.7 -4.6 42 20 B G T 3< S- 0 0 42 -4,-1.9 -1,-0.2 -5,-0.4 -2,-0.1 -0.382 76.1 -14.9 64.2 -85.5 2.1 -11.1 -7.2 43 21 B E T 3 S+ 0 0 184 -2,-2.1 -1,-0.3 -3,-0.2 2,-0.1 0.555 113.3 102.5-122.4 -19.0 -1.2 -12.9 -7.8 44 22 B R S < S- 0 0 149 -3,-2.3 -3,-0.1 -6,-0.1 -4,-0.0 -0.432 72.3-124.4 -67.8 138.7 -3.3 -11.7 -4.8 45 23 B G - 0 0 31 -25,-0.1 -24,-3.6 -2,-0.1 2,-0.2 -0.042 25.4-147.2 -71.6-175.9 -5.8 -9.0 -5.7 46 24 B F B -A 20 0A 75 -26,-0.4 2,-0.4 -25,-0.0 -26,-0.2 -0.733 14.4-111.2-139.9-169.7 -5.9 -5.6 -3.9 47 25 B F + 0 0 147 -28,-1.3 3,-0.1 -2,-0.2 -2,-0.0 -0.846 52.1 133.9-134.4 98.9 -8.3 -2.9 -2.9 48 26 B Y S S+ 0 0 110 -2,-0.4 2,-0.3 1,-0.4 -46,-0.2 0.785 71.8 0.8-110.6 -55.5 -8.0 0.5 -4.7 49 27 B T - 0 0 102 -48,-0.1 -1,-0.4 0, 0.0 0, 0.0 -0.931 62.5-136.1-134.6 160.2 -11.5 1.6 -5.7 50 28 B K - 0 0 121 -2,-0.3 -3,-0.0 -3,-0.1 0, 0.0 -0.897 17.6-126.7-119.0 149.5 -15.1 0.3 -5.3 51 29 B P 0 0 121 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.027 360.0 360.0 -77.1-171.6 -17.9 0.1 -7.9 52 30 B T 0 0 190 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.930 360.0 360.0 178.4 360.0 -21.5 1.5 -7.4