==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 05-OCT-01 1K48 . COMPND 2 MOLECULE: KALATA B1; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR L.SKJELDAL,L.GRAN,K.SLETTEN,B.F.VOLKMAN . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2154.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 8 A N 0 0 161 0, 0.0 28,-0.1 0, 0.0 19,-0.1 0.000 360.0 360.0 360.0 18.0 -6.9 1.5 5.2 2 9 A G + 0 0 45 1,-0.4 4,-0.1 19,-0.0 18,-0.0 -0.110 360.0 119.4 136.0 -35.1 -5.6 -1.9 6.0 3 10 A L - 0 0 117 1,-0.1 2,-2.8 26,-0.1 26,-2.2 -0.499 63.1-137.7 -66.3 116.7 -6.9 -3.9 3.1 4 11 A P S S+ 0 0 99 0, 0.0 24,-0.2 0, 0.0 -1,-0.1 -0.361 81.1 96.8 -75.0 62.3 -3.9 -5.3 1.2 5 12 A V + 0 0 105 -2,-2.8 23,-0.2 1,-0.0 -2,-0.1 0.050 37.4 114.6-135.9 21.0 -5.5 -4.6 -2.2 6 13 A a - 0 0 23 21,-0.9 22,-0.2 -3,-0.4 3,-0.1 0.904 69.5-142.4 -59.5 -42.7 -3.8 -1.2 -2.8 7 14 A G + 0 0 53 20,-0.4 2,-0.3 1,-0.4 -1,-0.1 0.311 68.8 90.7 94.5 -6.2 -2.0 -2.9 -5.8 8 15 A E - 0 0 88 19,-0.1 19,-1.9 9,-0.0 -1,-0.4 -0.807 63.8-140.8-120.1 161.5 1.1 -0.9 -5.0 9 16 A T B -A 26 0A 69 6,-0.3 17,-0.2 -2,-0.3 8,-0.1 -0.623 6.8-158.1-114.8 174.5 4.2 -1.5 -2.9 10 17 A b + 0 0 2 15,-1.9 5,-0.2 -2,-0.2 3,-0.1 -0.434 31.1 148.8-153.8 67.6 6.4 0.6 -0.6 11 18 A V S S+ 0 0 104 1,-0.2 4,-0.1 3,-0.2 15,-0.1 0.717 86.8 42.9 -74.7 -22.1 9.8 -1.1 -0.3 12 19 A G S S- 0 0 84 2,-0.2 -1,-0.2 -3,-0.1 3,-0.1 0.493 127.8 -98.6 -98.9 -8.3 11.3 2.4 0.1 13 20 A G S S+ 0 0 48 12,-0.1 2,-0.3 1,-0.1 -2,-0.1 0.645 97.6 100.6 97.2 20.9 8.5 3.5 2.4 14 21 A T - 0 0 94 1,-0.1 -2,-0.2 -5,-0.0 -3,-0.2 -0.816 51.7-166.6-142.0 97.2 6.5 5.3 -0.3 15 22 A c - 0 0 22 -2,-0.3 -6,-0.3 -5,-0.2 -1,-0.1 0.848 28.5-146.9 -48.1 -36.7 3.5 3.6 -1.8 16 23 A N + 0 0 150 1,-0.3 -1,-0.2 -3,-0.1 -6,-0.1 0.317 67.1 98.2 82.8 -8.0 3.8 6.2 -4.4 17 24 A T S S- 0 0 42 -8,-0.1 3,-0.4 1,-0.1 -1,-0.3 -0.877 73.7-121.0-115.4 146.8 -0.0 6.0 -4.6 18 25 A P S S+ 0 0 114 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.125 91.7 27.1 -75.0 176.2 -2.6 8.3 -3.0 19 26 A G S S+ 0 0 72 1,-0.2 2,-0.3 10,-0.0 0, 0.0 0.825 98.6 129.8 35.4 45.5 -5.3 7.1 -0.6 20 27 A c - 0 0 25 -3,-0.4 9,-0.2 9,-0.1 -1,-0.2 -0.740 56.0-145.9-120.9 169.7 -2.9 4.3 0.3 21 28 A T - 0 0 61 7,-2.2 7,-0.3 -2,-0.3 8,-0.1 -0.565 18.7-145.4-138.6 71.0 -1.6 3.0 3.6 22 29 A b + 0 0 51 5,-0.3 5,-0.2 1,-0.2 -13,-0.1 -0.108 34.8 157.9 -39.3 114.1 1.9 1.7 3.1 23 30 A S - 0 0 76 3,-0.6 4,-0.2 -21,-0.0 -1,-0.2 0.460 52.0 -91.3-119.9 -12.3 2.0 -1.2 5.5 24 31 A W S S+ 0 0 135 1,-0.2 -13,-0.1 4,-0.0 -15,-0.0 0.577 103.4 30.8 62.3 137.0 4.9 -3.1 3.8 25 32 A P S S+ 0 0 76 0, 0.0 -15,-1.9 0, 0.0 2,-0.3 -0.908 136.0 11.7 -74.9 -21.4 5.7 -4.9 2.0 26 33 A V B S-A 9 0A 57 -17,-0.2 -3,-0.6 -3,-0.1 -17,-0.3 -0.848 80.7-117.8-111.8 147.7 2.6 -3.8 0.1 27 34 A a - 0 0 0 -19,-1.9 -21,-0.9 -2,-0.3 -20,-0.4 -0.269 28.8-148.5 -75.9 167.1 0.5 -0.8 0.8 28 35 A T 0 0 5 -7,-0.3 -7,-2.2 -24,-0.2 -1,-0.1 -0.822 360.0 360.0-132.9 171.3 -3.2 -1.1 1.8 29 36 A R 0 0 176 -26,-2.2 -9,-0.1 -2,-0.3 -26,-0.1 -0.443 360.0 360.0-114.7 360.0 -6.4 0.9 1.4