==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 18-JUN-08 2K4U . COMPND 2 MOLECULE: POTASSIUM CHANNEL TOXIN ALPHA-KTX 3.6; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR S.J.YIN,L.JIANG,H.YI,S.HAN,D.W.YANG,M.L.LIU,H.LIU,Z.J.CAO, . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3296.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 54.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 18.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 160 0, 0.0 2,-0.2 0, 0.0 34,-0.1 0.000 360.0 360.0 360.0 141.7 -10.8 0.7 1.6 2 2 A G - 0 0 25 31,-0.1 2,-0.2 2,-0.0 31,-0.1 -0.578 360.0 -62.8 87.2-147.7 -7.1 -0.6 1.7 3 3 A I - 0 0 50 29,-0.5 2,-0.4 -2,-0.2 31,-0.1 -0.714 33.1-115.4-132.2 178.7 -5.2 -1.5 4.9 4 4 A N + 0 0 130 -2,-0.2 2,-0.3 27,-0.1 29,-0.1 -0.775 60.6 123.5-127.8 83.7 -3.8 0.3 8.1 5 5 A V - 0 0 60 -2,-0.4 27,-3.1 27,-0.4 -2,-0.1 -0.980 56.3-112.0-139.8 145.3 0.1 0.1 8.1 6 6 A K B -A 31 0A 157 -2,-0.3 2,-0.3 25,-0.2 25,-0.2 -0.313 30.6-164.1 -71.8 165.2 2.8 2.8 8.3 7 7 A a - 0 0 24 23,-0.6 4,-0.0 1,-0.1 25,-0.0 -0.972 23.0-161.9-149.4 161.5 5.2 3.7 5.3 8 8 A K S S- 0 0 169 -2,-0.3 -1,-0.1 23,-0.0 3,-0.0 0.561 85.5 -15.6-121.1 -18.9 8.5 5.5 4.7 9 9 A H S S- 0 0 157 0, 0.0 18,-0.1 0, 0.0 -2,-0.1 0.250 91.6 -88.2-147.6 -77.3 8.5 6.2 0.9 10 10 A S S >> S+ 0 0 34 16,-0.1 3,-2.1 22,-0.0 4,-0.7 -0.029 110.5 65.7-179.7 -56.7 6.0 4.3 -1.4 11 11 A R H 3> S+ 0 0 206 1,-0.3 4,-0.9 2,-0.2 3,-0.4 0.779 93.7 66.9 -57.8 -27.6 7.5 0.9 -2.6 12 12 A Q H 34 S+ 0 0 114 1,-0.2 -1,-0.3 2,-0.2 14,-0.1 0.693 97.2 54.7 -67.7 -19.3 7.5 -0.3 1.0 13 13 A b H <> S+ 0 0 1 -3,-2.1 4,-2.4 2,-0.2 -1,-0.2 0.746 93.9 67.7 -84.6 -25.5 3.6 -0.2 0.9 14 14 A L H X S+ 0 0 77 -4,-0.7 4,-2.7 -3,-0.4 5,-0.3 0.904 94.6 59.9 -60.2 -39.0 3.5 -2.5 -2.3 15 15 A K H X S+ 0 0 170 -4,-0.9 4,-2.1 2,-0.2 5,-0.2 0.959 113.2 33.4 -50.6 -63.7 4.8 -5.4 -0.1 16 16 A P H > S+ 0 0 39 0, 0.0 4,-2.0 0, 0.0 6,-0.2 0.859 118.4 54.7 -68.9 -33.2 1.9 -5.4 2.4 17 17 A c H X>S+ 0 0 0 -4,-2.4 5,-1.7 2,-0.2 4,-0.5 0.945 112.9 40.9 -62.2 -49.0 -0.7 -4.4 -0.3 18 18 A K H ><5S+ 0 0 165 -4,-2.7 3,-1.1 -5,-0.2 -1,-0.2 0.922 116.3 49.8 -66.9 -42.2 0.2 -7.3 -2.7 19 19 A D H 3<5S+ 0 0 152 -4,-2.1 -1,-0.2 -5,-0.3 -2,-0.2 0.820 105.2 58.0 -67.2 -31.1 0.5 -9.8 0.2 20 20 A A H 3<5S- 0 0 57 -4,-2.0 -1,-0.3 -5,-0.2 -2,-0.2 0.640 123.1-106.8 -68.6 -17.0 -3.0 -8.6 1.6 21 21 A G T <<5S+ 0 0 57 -3,-1.1 -3,-0.2 -4,-0.5 -2,-0.1 0.372 78.8 127.2 101.9 -0.4 -4.5 -9.6 -1.9 22 22 A M < - 0 0 67 -5,-1.7 -1,-0.3 -6,-0.2 3,-0.0 -0.310 53.2-141.3 -78.1 168.2 -5.1 -6.0 -3.2 23 23 A R S S+ 0 0 153 12,-2.2 -1,-0.1 -2,-0.1 2,-0.1 0.905 77.6 47.9 -97.7 -63.9 -3.8 -4.8 -6.7 24 24 A F E -B 35 0A 117 11,-1.2 11,-0.6 12,-0.1 2,-0.2 -0.386 62.1-178.4 -74.7 160.0 -2.6 -1.2 -6.2 25 25 A G E +B 34 0A 12 9,-0.2 2,-0.3 -2,-0.1 -11,-0.2 -0.844 12.1 144.8-162.2 124.9 -0.3 0.0 -3.4 26 26 A K E -B 33 0A 126 7,-2.5 7,-2.5 -2,-0.2 2,-0.6 -0.987 48.5-105.6-153.3 153.8 1.1 3.5 -2.4 27 27 A a E +B 32 0A 32 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.719 50.5 160.8 -77.3 119.1 2.1 5.6 0.7 28 28 A T E > +B 31 0A 79 3,-3.0 3,-2.4 -2,-0.6 -2,-0.0 -0.985 60.0 6.9-140.4 148.4 -0.6 8.3 1.1 29 29 A N T 3 S- 0 0 162 -2,-0.3 3,-0.1 1,-0.3 -1,-0.1 0.787 131.0 -61.1 49.9 28.4 -1.6 10.5 4.1 30 30 A G T 3 S+ 0 0 52 1,-0.2 -23,-0.6 -24,-0.0 2,-0.3 0.657 123.0 86.8 73.4 18.2 1.5 9.1 5.9 31 31 A K E < S-AB 6 28A 77 -3,-2.4 -3,-3.0 -25,-0.2 2,-0.3 -0.944 86.8 -89.6-144.5 157.5 -0.0 5.5 5.7 32 32 A b E - B 0 27A 3 -27,-3.1 -29,-0.5 -2,-0.3 -27,-0.4 -0.597 41.7-169.7 -74.0 129.7 -0.2 2.5 3.3 33 33 A H E + B 0 26A 69 -7,-2.5 -7,-2.5 -2,-0.3 2,-0.3 -0.979 8.3 173.2-124.2 135.1 -3.1 2.6 0.8 34 34 A c E - B 0 25A 0 -2,-0.4 -9,-0.2 -9,-0.2 -20,-0.0 -0.898 10.1-161.2-133.2 163.5 -4.3 -0.2 -1.5 35 35 A T E - B 0 24A 39 -11,-0.6 -12,-2.2 -2,-0.3 -11,-1.2 -0.968 25.9 -98.5-146.1 155.7 -7.3 -0.8 -3.8 36 36 A P 0 0 92 0, 0.0 -12,-0.1 0, 0.0 -14,-0.1 -0.194 360.0 360.0 -70.6 165.4 -9.1 -3.8 -5.5 37 37 A K 0 0 212 -14,-0.1 -15,-0.0 -13,-0.0 -2,-0.0 0.812 360.0 360.0 -64.9 360.0 -8.5 -5.0 -9.1