==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 25-JUN-08 2K57 . COMPND 2 MOLECULE: PUTATIVE LIPOPROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS SYRINGAE PV. PHASEOLICOLA . AUTHOR D.HANG,J.A.ARAMINI,P.ROSSI,D.WANG,M.JIANG,M.MAGLAQUI,R.XIAO, . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4015.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 76.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 23 41.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 12 21.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 201 0, 0.0 19,-0.4 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 143.3 -12.9 9.2 -1.6 2 2 A A + 0 0 71 17,-0.2 17,-0.3 2,-0.0 16,-0.1 -0.970 360.0 151.1-123.6 130.4 -12.3 6.0 -3.6 3 3 A S - 0 0 34 15,-0.7 2,-0.5 -2,-0.4 14,-0.1 -0.967 47.4-105.7-156.8 137.6 -9.7 5.6 -6.4 4 4 A P + 0 0 47 0, 0.0 49,-2.7 0, 0.0 50,-0.5 -0.522 42.4 175.8 -72.1 115.5 -7.7 2.6 -7.8 5 5 A T E -AB 17 52A 4 12,-1.9 12,-3.0 -2,-0.5 2,-0.7 -0.973 18.9-153.2-126.0 122.4 -4.0 2.8 -6.6 6 6 A V E -AB 16 51A 21 45,-2.5 45,-1.7 -2,-0.4 2,-0.6 -0.833 9.0-158.1 -98.3 115.0 -1.4 0.1 -7.3 7 7 A I E -AB 15 50A 2 8,-3.0 8,-2.5 -2,-0.7 2,-0.5 -0.828 5.2-157.4 -94.6 117.8 1.4 -0.1 -4.7 8 8 A T E -AB 14 49A 4 41,-2.6 40,-2.5 -2,-0.6 41,-1.7 -0.841 12.0-145.0 -98.5 123.6 4.6 -1.7 -6.0 9 9 A L E - B 0 47A 5 4,-2.8 3,-0.4 -2,-0.5 38,-0.2 -0.213 30.6 -92.5 -83.7 174.4 7.0 -3.2 -3.3 10 10 A N S S+ 0 0 117 36,-2.4 37,-0.1 1,-0.3 -1,-0.1 0.864 126.9 43.0 -53.7 -44.0 10.8 -3.3 -3.2 11 11 A D S S- 0 0 120 35,-0.2 -1,-0.3 2,-0.1 35,-0.0 0.757 127.0 -96.9 -75.8 -24.3 11.0 -6.8 -4.8 12 12 A G S S+ 0 0 28 -3,-0.4 2,-0.4 1,-0.3 -2,-0.1 0.298 72.2 149.1 121.0 -6.8 8.3 -5.9 -7.3 13 13 A R - 0 0 145 -5,-0.1 -4,-2.8 1,-0.0 2,-0.5 -0.457 32.1-157.6 -59.9 115.9 5.2 -7.4 -5.6 14 14 A E E -A 8 0A 123 -2,-0.4 2,-0.4 -6,-0.2 -6,-0.2 -0.865 11.9-172.6-105.1 130.2 2.3 -5.1 -6.7 15 15 A I E -A 7 0A 22 -8,-2.5 -8,-3.0 -2,-0.5 2,-0.5 -0.978 15.1-141.9-121.8 132.3 -1.0 -4.8 -4.7 16 16 A Q E -A 6 0A 83 -2,-0.4 19,-1.2 -10,-0.2 2,-0.3 -0.806 15.3-162.3 -98.7 125.9 -4.0 -2.9 -6.0 17 17 A A E -AC 5 34A 1 -12,-3.0 -12,-1.9 -2,-0.5 17,-0.3 -0.763 21.3-144.1-105.4 150.7 -6.1 -0.8 -3.6 18 18 A V S S+ 0 0 51 15,-2.2 -15,-0.7 -2,-0.3 2,-0.3 0.633 88.5 22.3 -85.7 -17.2 -9.7 0.5 -4.0 19 19 A D S S- 0 0 30 14,-0.6 14,-0.3 -17,-0.3 -14,-0.2 -0.898 100.5 -70.8-142.0 175.3 -8.9 3.7 -2.1 20 20 A T - 0 0 88 -19,-0.4 13,-0.1 -2,-0.3 -2,-0.1 -0.379 50.4-115.4 -77.4 142.3 -5.8 5.8 -1.2 21 21 A P - 0 0 36 0, 0.0 2,-0.5 0, 0.0 11,-0.2 -0.285 17.6-136.1 -76.5 157.5 -3.2 4.5 1.4 22 22 A K E -D 31 0B 99 9,-2.7 9,-3.1 -2,-0.0 2,-0.7 -0.958 6.8-142.7-116.2 123.3 -2.4 6.1 4.8 23 23 A Y E -D 30 0B 118 -2,-0.5 2,-0.8 7,-0.2 7,-0.2 -0.758 19.8-152.8 -82.2 114.3 1.2 6.5 6.2 24 24 A D > - 0 0 25 5,-2.9 4,-2.5 -2,-0.7 5,-0.5 -0.796 14.4-170.7 -98.2 105.8 1.0 5.7 9.9 25 25 A E T 4 S+ 0 0 158 -2,-0.8 -1,-0.2 1,-0.2 -2,-0.0 0.793 83.5 61.7 -61.4 -29.4 3.7 7.5 11.9 26 26 A E T 4 S+ 0 0 156 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.961 122.2 15.6 -65.4 -55.1 2.8 5.5 15.0 27 27 A S T 4 S- 0 0 62 2,-0.1 -2,-0.2 -3,-0.1 -1,-0.2 0.630 99.5-124.9 -96.1 -17.9 3.5 2.0 13.8 28 28 A G < + 0 0 7 -4,-2.5 16,-1.9 1,-0.3 2,-0.2 0.593 68.1 122.6 85.2 10.9 5.6 3.0 10.7 29 29 A F E - E 0 43B 72 -5,-0.5 -5,-2.9 14,-0.2 2,-0.5 -0.562 63.8-120.6-101.4 165.0 3.4 1.1 8.2 30 30 A Y E -DE 23 42B 61 12,-2.8 12,-1.5 -7,-0.2 2,-0.6 -0.945 26.2-152.0-101.6 122.7 1.4 2.0 5.1 31 31 A E E +DE 22 41B 31 -9,-3.1 -9,-2.7 -2,-0.5 2,-0.3 -0.850 24.5 163.3 -99.0 119.7 -2.3 1.1 5.5 32 32 A F E - E 0 40B 5 8,-2.4 8,-2.5 -2,-0.6 2,-0.7 -0.995 36.0-126.6-140.0 144.6 -4.1 0.3 2.2 33 33 A K E - E 0 39B 80 -2,-0.3 -15,-2.2 -14,-0.3 -14,-0.6 -0.798 29.7-139.3 -95.1 110.6 -7.4 -1.4 1.4 34 34 A Q B > -C 17 0A 43 4,-2.8 3,-2.5 -2,-0.7 -16,-0.3 0.002 33.3 -91.9 -60.4 169.1 -7.0 -4.2 -1.2 35 35 A L T 3 S+ 0 0 102 -19,-1.2 -1,-0.1 1,-0.3 -18,-0.1 0.790 126.8 60.7 -53.1 -30.4 -9.5 -4.9 -4.1 36 36 A D T 3 S- 0 0 111 2,-0.2 -1,-0.3 1,-0.1 3,-0.1 0.634 121.7-107.3 -73.2 -12.3 -11.4 -7.3 -1.8 37 37 A G S < S+ 0 0 44 -3,-2.5 2,-0.5 1,-0.3 -2,-0.2 0.579 76.8 138.2 89.8 13.4 -12.1 -4.4 0.6 38 38 A K - 0 0 110 -4,-0.1 -4,-2.8 -6,-0.0 2,-0.4 -0.822 49.6-136.2 -96.9 125.3 -9.6 -5.8 3.2 39 39 A Q E +E 33 0B 136 -2,-0.5 2,-0.3 -6,-0.3 -6,-0.2 -0.641 29.6 174.3 -78.4 128.4 -7.2 -3.3 4.9 40 40 A T E -E 32 0B 50 -8,-2.5 -8,-2.4 -2,-0.4 2,-0.4 -0.911 17.5-145.6-131.6 163.5 -3.6 -4.5 5.2 41 41 A R E +E 31 0B 131 -2,-0.3 2,-0.3 -10,-0.2 -10,-0.2 -0.992 14.3 177.7-136.4 131.6 -0.4 -2.8 6.5 42 42 A I E -E 30 0B 37 -12,-1.5 -12,-2.8 -2,-0.4 5,-0.1 -0.967 39.9 -85.9-134.2 150.9 3.3 -3.1 5.3 43 43 A N E >> -E 29 0B 47 -2,-0.3 3,-1.7 -14,-0.2 4,-0.5 -0.140 35.9-116.7 -60.9 147.6 6.5 -1.4 6.5 44 44 A K T 34 S+ 0 0 101 -16,-1.9 3,-0.3 1,-0.3 -1,-0.1 0.687 112.4 55.0 -55.9 -24.1 7.5 2.1 5.1 45 45 A D T 34 S+ 0 0 96 1,-0.2 -1,-0.3 -36,-0.0 -2,-0.1 0.666 95.2 66.2 -87.6 -17.1 10.7 0.7 3.5 46 46 A Q T <4 S+ 0 0 75 -3,-1.7 -36,-2.4 -37,-0.1 2,-0.6 0.674 80.1 93.8 -78.4 -17.7 9.0 -2.1 1.5 47 47 A V E < +B 9 0A 26 -4,-0.5 -38,-0.3 -3,-0.3 3,-0.1 -0.674 43.3 170.4 -84.6 115.8 7.1 0.4 -0.7 48 48 A R E + 0 0 148 -40,-2.5 2,-0.4 -2,-0.6 -39,-0.2 0.938 66.7 4.5 -83.2 -62.3 9.0 1.2 -4.0 49 49 A T E -B 8 0A 42 -41,-1.7 -41,-2.6 2,-0.1 2,-0.6 -0.986 54.2-156.8-132.9 137.7 6.4 3.2 -6.0 50 50 A V E +B 7 0A 72 -2,-0.4 2,-0.3 -43,-0.2 -43,-0.2 -0.924 33.2 154.5-113.2 106.1 2.8 4.5 -5.2 51 51 A K E -B 6 0A 106 -45,-1.7 -45,-2.5 -2,-0.6 2,-0.1 -0.965 36.6-124.7-135.4 149.5 0.8 5.1 -8.5 52 52 A D E > -B 5 0A 62 -2,-0.3 3,-0.6 -47,-0.3 -47,-0.3 -0.384 22.5-124.4 -81.8 163.0 -2.8 5.1 -9.5 53 53 A L T 3 S+ 0 0 86 -49,-2.7 -48,-0.1 1,-0.2 -1,-0.1 0.485 107.5 73.9 -79.6 -3.8 -4.4 3.0 -12.3 54 54 A L T 3 0 0 121 -50,-0.5 -1,-0.2 1,-0.2 -49,-0.1 0.111 360.0 360.0 -97.2 20.2 -5.4 6.4 -13.8 55 55 A E < 0 0 162 -3,-0.6 -1,-0.2 0, 0.0 -2,-0.1 0.968 360.0 360.0 -55.8 360.0 -1.9 7.3 -15.0