==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 09-JUL-08 2K6I . COMPND 2 MOLECULE: UNCHARACTERIZED PROTEIN MJ0223; . SOURCE 2 ORGANISM_SCIENTIFIC: METHANOCALDOCOCCUS JANNASCHII; . AUTHOR N.BIUKOVIC,S.GAYEN,K.PERVUSHIN,G.GRUBER,G.BIUKOVIC . 47 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5205.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 39 83.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 4.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 15 31.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 22 46.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 255 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -68.8 2.1 -0.0 -1.2 2 2 A G - 0 0 69 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.337 360.0 -58.8-137.8-140.6 2.9 -3.7 -1.7 3 3 A V - 0 0 124 -2,-0.1 2,-1.3 2,-0.0 3,-0.0 -0.906 35.1-123.6-121.3 149.1 3.5 -6.9 0.3 4 4 A S + 0 0 110 -2,-0.3 3,-0.2 1,-0.2 4,-0.1 -0.670 59.6 131.2 -91.9 84.0 6.1 -7.7 2.9 5 5 A V > + 0 0 54 -2,-1.3 4,-2.8 1,-0.1 5,-0.4 -0.013 20.6 124.8-121.8 27.2 7.7 -10.8 1.5 6 6 A M T 4 S+ 0 0 167 1,-0.2 7,-0.3 2,-0.2 4,-0.2 0.792 90.2 31.3 -56.8 -28.2 11.4 -9.7 1.9 7 7 A E T 4 S+ 0 0 107 -3,-0.2 -1,-0.2 2,-0.1 -2,-0.1 0.751 116.3 57.3 -99.2 -32.9 11.8 -13.0 3.8 8 8 A A T 4 S+ 0 0 81 1,-0.2 -2,-0.2 -4,-0.1 3,-0.2 0.946 108.3 45.8 -63.5 -50.3 9.3 -15.1 1.9 9 9 A I S < S+ 0 0 119 -4,-2.8 2,-0.3 1,-0.3 -1,-0.2 0.831 135.6 3.9 -62.5 -32.7 10.9 -14.5 -1.5 10 10 A K > - 0 0 130 -5,-0.4 3,-0.5 -4,-0.2 -1,-0.3 -0.942 52.8-155.0-157.9 132.5 14.3 -15.2 0.1 11 11 A E T 3 + 0 0 146 -2,-0.3 -4,-0.1 1,-0.2 -3,-0.1 -0.031 68.0 109.5 -96.3 30.0 15.5 -16.3 3.6 12 12 A V T 3 - 0 0 81 -5,-0.0 -1,-0.2 1,-0.0 -5,-0.1 0.746 69.0-148.5 -75.5 -24.3 18.9 -14.7 3.0 13 13 A K X> + 0 0 88 -3,-0.5 3,-2.1 -7,-0.3 4,-0.6 0.820 35.9 161.0 58.6 31.5 18.1 -12.0 5.5 14 14 A L H >> + 0 0 107 1,-0.3 3,-1.4 2,-0.2 4,-0.5 0.810 64.1 72.2 -51.8 -31.2 20.3 -9.6 3.4 15 15 A A H >> S+ 0 0 59 1,-0.3 3,-1.8 2,-0.2 4,-0.7 0.857 87.1 62.6 -53.3 -37.7 18.5 -6.8 5.2 16 16 A E H X> S+ 0 0 106 -3,-2.1 4,-1.8 1,-0.3 3,-0.9 0.833 89.9 68.0 -58.0 -33.2 20.4 -7.7 8.4 17 17 A E H X S+ 0 0 96 -4,-1.0 4,-0.8 2,-0.2 3,-0.7 0.800 108.1 64.2 -85.9 -32.5 26.4 -0.1 13.3 24 24 A E H >X S+ 0 0 79 -4,-2.0 4,-2.1 1,-0.3 3,-1.4 0.916 95.0 59.4 -56.8 -46.0 29.9 -1.4 12.4 25 25 A E H 3X S+ 0 0 97 -4,-1.1 4,-2.7 1,-0.3 -1,-0.3 0.832 95.2 65.8 -52.6 -34.0 30.9 2.0 11.1 26 26 A A H <4 S+ 0 0 74 -3,-0.7 4,-0.3 -4,-0.4 -1,-0.3 0.881 107.5 39.0 -56.5 -40.4 30.1 3.4 14.6 27 27 A K H XX S+ 0 0 121 -3,-1.4 3,-1.2 -4,-0.8 4,-1.0 0.900 111.8 56.8 -77.1 -43.3 33.0 1.3 16.0 28 28 A N H >X S+ 0 0 65 -4,-2.1 3,-1.3 1,-0.3 4,-1.2 0.922 102.1 55.6 -53.7 -48.4 35.4 1.9 13.0 29 29 A R H 3< S+ 0 0 171 -4,-2.7 4,-0.3 1,-0.3 -1,-0.3 0.741 102.0 60.5 -57.7 -22.5 35.1 5.7 13.5 30 30 A A H X> S+ 0 0 44 -3,-1.2 4,-1.2 -4,-0.3 3,-0.6 0.813 101.7 50.5 -75.0 -31.5 36.2 5.0 17.1 31 31 A E H X S+ 0 0 152 -4,-1.2 3,-1.7 1,-0.3 4,-0.7 0.780 97.3 73.7 -60.1 -26.6 43.0 5.6 18.7 35 35 A A H >X S+ 0 0 20 -4,-2.6 4,-2.2 1,-0.3 3,-1.0 0.810 79.5 73.4 -57.2 -30.5 45.0 4.9 15.5 36 36 A E H <4 S+ 0 0 123 -3,-1.7 4,-0.4 1,-0.3 -1,-0.3 0.840 93.6 53.5 -52.8 -35.2 46.9 8.2 16.3 37 37 A A H <4 S+ 0 0 78 -3,-1.7 3,-0.4 -4,-0.3 4,-0.4 0.813 111.6 44.3 -70.3 -30.9 48.7 6.2 19.0 38 38 A I H XX S+ 0 0 104 -3,-1.0 4,-0.9 -4,-0.7 3,-0.7 0.713 94.3 78.1 -85.0 -23.0 49.7 3.5 16.5 39 39 A E H 3X S+ 0 0 140 -4,-2.2 4,-0.6 1,-0.3 -1,-0.2 0.724 90.4 58.8 -58.0 -20.6 50.7 6.1 13.9 40 40 A E H >> S+ 0 0 153 -3,-0.4 4,-1.0 -4,-0.4 3,-1.0 0.883 93.1 62.3 -76.4 -40.8 53.8 6.5 16.0 41 41 A A H <4 S+ 0 0 37 -3,-0.7 -1,-0.2 -4,-0.4 -2,-0.2 0.775 93.5 68.1 -55.7 -26.4 54.9 2.8 15.7 42 42 A K H 3< S+ 0 0 180 -4,-0.9 3,-0.4 1,-0.2 -1,-0.3 0.923 93.9 54.5 -60.1 -46.3 55.1 3.4 11.9 43 43 A K H << S+ 0 0 191 -3,-1.0 2,-0.3 -4,-0.6 -1,-0.2 0.887 129.4 14.1 -55.4 -41.4 58.1 5.7 12.3 44 44 A L S < S+ 0 0 147 -4,-1.0 2,-0.4 2,-0.0 -1,-0.3 -0.816 78.3 166.1-142.1 98.4 59.9 3.0 14.2 45 45 A I - 0 0 117 -3,-0.4 2,-1.2 -2,-0.3 -3,-0.1 -0.924 39.5-119.8-116.6 138.8 58.5 -0.6 14.1 46 46 A A 0 0 100 -2,-0.4 -2,-0.0 1,-0.2 -5,-0.0 -0.621 360.0 360.0 -77.8 97.6 60.3 -3.8 15.2 47 47 A C 0 0 172 -2,-1.2 -1,-0.2 0, 0.0 0, 0.0 0.746 360.0 360.0 -76.6 360.0 60.4 -5.8 12.0